
ARM7500FE Data Sheet
ARM DDI 0077B

8-1

111

Open Access - Preliminary

This chapter gives an overview of the FPA coprocessor macrocell.

8.1 Overview 8-2

8.2 FPA Functional Blocks 8-3

8.3 FPA Block Diagram 8-5

The FPA Coprocessor Macrocell8

Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-2

Open Access - Preliminary

8.1 Overview
The FPA is a floating-point accelerator for the ARM family of CPUs. It has been
designed to maximize the performance/power, performance/cost and performance/die
size ratios while still providing a balanced floating-point versus integer performance for
ARM-based systems.

Typical performance in the range 3 to 8 MFlops is expected at a clock frequency of
40 MHz; actual performance is dependent on the:

• precision selected

• system configuration

• the degree to which the floating-point code is scheduled and otherwise
optimized

The FPA in the ARM7500FE is an on-chip floating-point coprocessor connected to
the ARM processor core. It is a fully static design and its low power consumption,
especially when in standby mode, makes it eminently suitable for portable and other
power- and cost-sensitive applications. When used in conjunction with its support
code, the FPA fully implements the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

The design of the FPA is based on an 81-bit internal datapath, with autonomous
load/store and arithmetic units which can operate concurrently. Single, double and
extended precision IEEE formats are all supported. The FPA achieves its high
performance, whilst remaining a low cost and low power solution, by employing RISC
and other advanced design techniques. It is interfaced to the ARM CPU over a simple,
high-performance coprocessor bus. The ARM instruction pipeline is mirrored on
the FPA so that floating-point instructions can be executed directly with minimal
communication overhead. Pipelining, concurrent execution units and speculative
execution are all employed to improve performance without having a great impact on
power consumption.

A RISC approach has been taken in selecting between those floating-point
instructions which are candidates for implementation in the FPA and those which are
handled by software support. The FPA instruction repertoire includes only the basic
operations plus compare, absolute value, round to integral value and floating-point to
integer and integer to floating-point conversions. In addition, only normalized
operands and zeros are handled in hardware; operations on denormalized numbers,
infinities and NaNs are handled by the support code. Only the inexact exception is
dealt with by hardware; all other exceptions cause the software support code to be
called, whether or not the associated trap is enabled. This approach has helped to
minimize the die size whilst having a negligible effect on performance in most
applications.

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-3

Open Access - Preliminary

8.2 FPA Functional Blocks
FPA consists of five main functional blocks:

• coprocessor interface

• instruction issuer

• load-store unit

• register bank

• arithmetic unit

These are described in the following sections

8.2.1 Coprocessor interface

This block is responsible for arbitrating instructions with the CPU and telling
the Load-Store unit when to go ahead with data transfers.

Like ARM integer instructions, all ARM floating-point instructions are conditional,
obviating the need for branches for many common constructs. If a failed condition
causes an instruction already issued to the Load-Store or Arithmetic unit to be
skipped, that instruction is cancelled and any results calculated thus far are discarded.

The same mechanism is used to cancel prefetched instructions if a branch is taken or
if the ARM CPU gets interrupted before an FPA instruction has been arbitrated.

8.2.2 Instruction issuer

The instruction issuer is responsible for examining the incoming instruction stream and
deciding whether any instructions are candidates for issuing to either the load-store
unit or the arithmetic unit.

Instructions can be selected from the fetch, decode or execute stages of the ARM
pipeline follower. Data anti-dependency hazards (write-after-write and
write-after-read) are dealt with by this unit by preventing issue until the hazard has
been cleared.

Instructions are issued strictly in order and only one can be issued per cycle.

8.2.3 The load-store unit

The load-store unit does the formatting and conversion necessary when moving data
between the 32-bit ARM databus and the 81-bit internal register format. It is also
responsible for checking all input operands and flagging any that are not normalized
numbers or zero.

Most subsequent operations on flagged data cause the instruction to be passed to
software which will then emulate the instruction. All internal operations are performed
to the internal 81-bit format.

Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-4

Open Access - Preliminary

8.2.4 The register bank

The register bank contains eight 81-bit dual read-access, dual write-access registers.

Data dependency hazards (read-after-write) are handled by the register control logic;
read requests from either unit are stalled until the hazard is cleared.

There is also a 33-bit temporary register, used by FIX, FLT and compare instructions
to transfer intermediate results between the Load-Store Unit and the Arithmetic Unit.

The register bank also contains logic for register-forwarding, allowing the result of one
calculation to be used directly as the source for the next.

8.2.5 The arithmetic unit

The arithmetic unit has a four-stage pipeline (Prepare, Calculate, Align and Round)
and can speculatively execute instructions up to, but not including, register writeback.
Writeback can only occur once the instruction has been arbitrated with the ARM CPU.

An unusual feature of the pipeline is that each of the pipeline stages is offset by one
half-cycle from the previous stage, allowing some instructions to traverse the pipeline
in 2 cycles.

The Calculate stage includes a 67-bit adder, iterative array multiplier and divide unit.
Fast barrel shifters are used for pre-alignment and post-normalization.

Arithmetic operations are normally performed asynchronously to the ARM instruction
stream so that an instruction is arbitrated with the CPU before the FPA has detected
whether an exception will occur. Arithmetic exceptions are therefore normally
imprecise. If precise exceptions are required (for example, in debugging), a mode bit
(the SO bit in the FPSR) can be set. This forces arbitration to be delayed until
the arithmetic operation has completed, at the expense of a reduction in performance.

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-5

Open Access - Preliminary

8.3 FPA Block Diagram

Data bus

Control signals

To/from ARM

Clock signals

Load-store unit

Register bank
Coprocessor

Clock

ADD

MUL

DIVIDE

Arithmetic unit

interface

from ARM

from ARM

Instruction
issuer

Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-6

Open Access - Preliminary

ARM7500FE Data Sheet
ARM DDI 0077B

9-1

111

Open Access - Preliminary

This chapter details the floating-point coprocessor programmer’s model

9.1 Overview 9-2

9.2 Floating-Point Operation 9-2

9.3 ARM Integer and Floating-Point Number Formats 9-4

9.4 The Floating-Point Status Register (FPSR) 9-8

9.5 The Floating-Point Control Register (FPCR) 9-11

Floating-Point Coprocessor
Programmer’s Model9

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-2

Open Access - Preliminary

9.1 Overview
The ARM IEEE floating-point system has:

• 8 high-precision floating-point registers, F0 to F7

• a working precision of 80 bits, comprising:

- 64-bit mantissa

- a 15-bit exponent

- a sign bit

9.1.1 Floating-point status register

There is a floating-point status register (FPSR) which, like ARM's PSR, holds all
the necessary status and control information for the floating-point system that
an application should be able to access. It holds flags which indicate various error
conditions, such as overflow and division by zero. Each flag has a corresponding trap
enable bit, which can be used to enable or disable a trap associated with the error
condition. Bits in the FPSR allow a client to distinguish different implementations of
the floating-point system and to enable or disable special features of the system.

9.1.2 Floating-point control register

The FPA also contains a floating-point control register (FPCR). This is used to
communicate status and control information between the FPA and the FPA support
code.

Note: The definition of the FPCR may be different for other implementations of the ARM
IEEE floating-point system; the FPCR may not even exist in some implementations.
Software outside the floating-point system should therefore not use the FPCR directly.

9.2 Floating-Point Operation
All basic floating-point instructions operate as though the result were computed to
infinite precision and then rounded to the length and in the way specified by
the instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to -infinity (M)

• Round to zero (Z)

The default is round to nearest : as required by the IEEE, this rounds to nearest even
for the tie case. If one of the other rounding modes is required it must be given in
the instruction.

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-3

Open Access - Preliminary

The floating-point system architecture is a load/store architecture (like the ARM CPU);
the data-processing operations only refer to floating-point registers. Values may be
stored into ARM memory in one of five formats (only four of which are visible at any
one time since P and EP are mutually exclusive):

• IEEE Single Precision (S)

• IEEE Double Precision (D)

• IEEE Double Extended Precision (E)

• Packed Decimal (P)

• Expanded Packed Decimal (EP)

If it is required to preserve register contents exactly (including signalling NaNs),
the LFM and SFM instructions should be used. Note however that LFM and SFM
should only be used for register preservation within programs and not for data which
is to be transferred between programs and/or systems. The format of data stored
using SFM is implementation-dependent and can generally only be restored by
an LFM instruction from the same implementation.

Floating-point systems may be built from software only, hardware only, or some
combination of software and hardware and the results look the same to
the programmer. However, the supervising operating system will need to be aware of
which implementation is in use, in order to extract the best performance.

Similarly, compilers can be tuned to generate bunched FP instructions for the FPE and
dispersed FP instructions for the FPA to improve overall performance. The manner in
which exceptions are signalled is at the discretion of the surrounding operating
system.

Note: In the case of the FPA system, an exception caused by a floating-point data operation
or a FLT may be asynchronous (due to the nature of the ARM coprocessor interface.)
Such an exception is raised some time after the instruction has started, by which time
the ARM may have executed a number of instructions following the one that has failed.
This means that the exact address of the instruction that caused the exception may
not be identifiable. However, all the information about the exception that the IEEE
Standard recommends is available.

Furthermore, in the FPA a “fully synchronous, but slow” mode of operation is available
that allows the address of the faulting instruction to be determined; this is described in
 Bit 10 SO - Select Synchronous Operation of FPA on page 9-9.

9.2.1 Additional information

Familiarity with the IEEE Standard for Binary Floating-point Arithmetic: ANSI/IEEE Std
754-1985 will be helpful in reading this datasheet.

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-4

Open Access - Preliminary

9.3 ARM Integer and Floating-Point Number Formats

9.3.1 Integer

9.3.2 IEEE single precision (S)

127 Normalized number exponent bias

126 Denormalized number exponent bias

9.3.3 IEEE double precision (D)

1023 Normalized number exponent bias

1022 Denormalized number exponent bias

Single and double values

31 0

msb 2’s complement lsb

31 30 23 22 0

sign exponent msb fraction lsb

31 30 20 19 0

First
word sign exponent msb fraction (ms part) lsb

msb fraction (ls part) lsb

Sign Exponent Fraction Value represented

Quiet NaN x maximum 1xxxxxxxxx IEEE Quiet NaN

Signalling NaN x maximum 0 non-zero IEEE Signalling NaN

Infinity sign maximum 0000000000 (-1)sign * infinity

Zero sign 0 0000000000 (-1)sign * 0

Denormalized no sign 0 non-zero (-1)sign * 0.fraction * 2-(denorm. bias)

Normalized no. sign not 0 and not maximum xxxxxxxxxx (-1)sign * 1.fraction * 2(exponent - norm. bias)

 Table 9-1: Single and double values

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-5

Open Access - Preliminary

9.3.4 IEEE extended double precision (E)

J is the bit to the left of the binary point

16383 normalized and denormalized number exponent bias

Extended values

** In general, illegal values must not be used, although specific floating-point
implementations may use these bit patterns for internal purposes.

31 30 15 14 0

First
word sign zeros fraction (ms part) lsb

Second
word

J msb fraction (ms part) lsb

Third
word msb fraction (ls part) lsb

Sign Exponent J Fraction Value represented

Quiet NaN x maximum x 1xxxxxxxxx IEEE Quiet NaN

Signalling NaN x maximum x 0 non-zero IEEE Signalling NaN

Infinity sign maximum 0 0000000000 (-1)sign * infinity

Zero sign 0 0 0000000000 (-1)sign * 0

Denormalized no sign 0 0 non-zero (-1)sign * 0.fraction * 2-(denorm.bias)

Normalized no. sign not max 1 xxxxxxxxxx (-1)sign * 1.fraction * 2(exponent - norm.bias)

** Illegal value x not 0 and not max 0 xxxxxxxxxx

** Illegal value x maximum 1 0000000000

 Table 9-2: Extended values

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-6

Open Access - Preliminary

9.3.5 Packed decimal (P)

• the value is +/- d * 10^(+/- e)

• d18 and e3 are the most significant digits of d and e respectively

• sign contains both the number's sign (bit 31) and the exponent's sign (bit 30).
The other bits (29,28) are 0

• the value of d is arranged with the decimal point between d18 and d17, and is
normalized so that for an ordinary number 1<=d18<=9

• the guaranteed ranges for d and e are 17 and 3 digits respectively: e3 and d0,
d1 may always be zero in a particular system.

• the result is undefined if any of the packed digits is hexadecimal A through F

Packed decimal values

All other combinations are undefined.

31 0

First
word sign e3 e2 e1 e0 d18 d17 d16

Second
word d15 d14 d13 d12 d11 d10 d9 d8

Third
word d7 d6 d5 d4 d3 d2 d1 d0

Sign
(top bit)

Sign
(next bit) Exponent Digit values

Quiet NaN x x FFFF d18>7, rest non-zero

Signalling NaN x x FFFF d18<8, rest non-zero

+/- Infinity 0,1 x FFFF all 0

 +/- Zero 0,1 0 0000 all 0

Number 0,1 0,1 0000-9999 1-9.999999999999999999

 Table 9-3: Packed decimal values

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-7

Open Access - Preliminary

9.3.6 Expanded packed decimal (EP)

• Value is +/- d * 10^(+/- e).

• d23 and e6 are the most significant digits of d and e respectively.

• Sign contains both the number's sign (bit 31) and the exponent's sign (bit 30).
The other bits (29,28) are 0.

• The value of d is arranged with the decimal point between d23 and d22, and
is normalized so that for an ordinary number 1<=d23<=9.

• The guaranteed ranges for d and e are 21 and 4 digits respectively: e6, e5, e4
and d2, d1, d0 may always be zero in a particular system.

• The result is undefined if any of the packed digits is hexadecimal A through F.

Expanded packed decimal values

All other combinations are undefined.

31 0

First
word sign e6 e5 e4 e3 e12 e1 e0

Second
word d23 d22 d21 d20 d19 d18 d17 d16

Third
word d15 d14 d13 d12 d11 d10 d9 d8

d7 d6 d5 d4 d3 d2 d1 d0

Sign
(top bit)

Sign
(next bit)

Exponent Digit values

Quiet NaN x x FFFFFFF d23>7, rest non-zero

Signalling NaN x x FFFFFFF d23<8, rest non-zero

+/- Infinity 0,1 x FFFFFFF all 0

+/- Zero 0,1 0 0000000 all 0

Number 0,1 0,1 0-9999999 1-9.99999999999999999999999

 Table 9-4: Expanded packed decimal values

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-8

Open Access - Preliminary

9.4 The Floating-Point Status Register (FPSR)
The floating-point status register (FPSR) consists of:

• a system ID byte

• an exception trap enable byte

• a system control byte

• a cumulative exception flags byte

Note: The FPSR is not cleared on reset. It is typically cleared by the support code using
an appropriate WFS.

9.4.1 System ID byte

The 8-bit SysId allows a user or operating system to distinguish which floating-point
system is in use. The top bit (bit 31) is:

set for HARDWARE (i.e. fast) systems

clear for SOFTWARE (i.e. slow) systems

Note: The SysId is read-only.

List of system IDs

The following system IDs are defined:

Floating-point Emulator 01 (HEX) (Software only)

FPA System 81 (HEX)

The following system IDs are also defined for backwards compatibility:

00(HEX) for pre-FPA software systems

80(HEX) for pre-FPA hardware systems

9.4.2 Exception trap enable byte

Each bit of the exception trap enable byte corresponds to one type of floating-point
exception. The exception types (IX,UF,OF,DZ,IO) are described below.

A bit in the cumulative exception flags byte is set as a result of executing a
floating-point instruction only if the corresponding bit is not set in the exception trap
enable byte; if the corresponding bit in the exception trap enable byte is set,
an exception trap will be taken instead of setting the exception flag. The trap handler
code can then set the relevant cumulative exception bit if desired.

Normally, reserved FPSR bits should not be altered by user code. However, they may
be initialized to zero.

31 24 0

SysId

31 23 21 20 19 18 17 16 0

Reserved IXE UFEOFEDZEIOE

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-9

Open Access - Preliminary

9.4.3 System control byte

These control bits determine which features of the floating-point system are in use.
Because these control bits are in the FPSR, their state will be preserved across
context switches, allowing different processes to use different features if necessary.
The following five control bits are defined for the FPA system:

Bit 8 ND - No Denormalized Numbers Bit

If this bit is set, the software forces all denormalized numbers to zero
to reduce lengthy execution times when dealing with denormalized
numbers. (Also known as abrupt underflow or flush to zero.) This
mode is not IEEE-compatible but may be required by some programs
for performance reasons. If this bit is clear, then denormalized
numbers will be handled in the normal IEEE-conformant way.

Bit 9 NE - NaN Exception Bit

When this bit is clear, extended format is regarded as an internal
format for conversions of signalling NaNs: only conversions between
single and double-precision will produce an invalid operation
exception because of a signalling NaN operand. This is required for
compatibility with old programs which use STFE and LDFE to
preserve register contents. When the NE bit is set, all conversions
between single, double and extended precision will produce an invalid
operation exception if the operand is a signalling NaN.

Bit 10 SO - Select Synchronous Operation of FPA

If this bit is set, all floating-point instructions will execute
synchronously and ARM will be made to busy-wait until the instruction
has completed. This will allow precise exceptions to be reported but
at the expense of increased execution time. If this bit is clear, the class
of floating-point instructions that can execute asynchronously to ARM
will do so. Exceptions that occur as a result of these instructions may
then be imprecise.

Bit 11 EP - Use Expanded Packed Decimal Format

If this bit is set, the expanded (four word) format will be used for
Packed Decimal numbers. Use of this expanded format allows
conversion from extended precision to packed decimal and back
again to be carried out without loss of accuracy. If this bit is clear,
standard (three word) format is used for Packed Decimal numbers.

Bit 12 AC - Use Alternative definition for C-flag on compare operations

If this bit is set, the ARM C-flag has the following interpretation after
a compare:

C: Greater Than or Equal or Unordered

This interpretation of the C-flag allows more of the IEEE predicates
to be tested by means of single ARM conditional instructions than is
possible using the original interpretation of the C-flag as shown below.

15 13 12 11 10 9 8

Reserved AC EP SO NE ND

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-10

Open Access - Preliminary

If this bit is clear, the ARM C-flag has the following interpretation after
a compare:

C: Greater Than or Equal

Normally, reserved FPSR bits should not be altered by user code. However, they may
be initialized to zero.

9.4.4 Cumulative exception flags byte

Whenever an exception condition arises and the corresponding trap enable bit is not
set, the appropriate cumulative exception flag in bits 0 to 4 will be set to 1.
If the relevant trap enable bit is set, an exception is delivered to the user's program in
a manner specific to the operating system.

Note: In the case of underflow, the state of the trap enable bit determines under which
conditions the underflow exception will arise.

These flags can only be cleared by a WFS instruction.

Normally, reserved FPSR bits should not be altered by user code. However, they may
be initialized to zero.

IO - invalid operation

The invalid operation exception arises when an operand is invalid for the operation
to be performed. The result (if the trap is not enabled) is a quiet NaN.

Invalid operations are:

• Any operation on a signalling NaN, except an LDF, LFM or SFM, or an MVF,
MNF, ABS or STF without change of precision.

• Magnitude subtraction of infinities, e.g. +infinity + -infinity.

• Multiplication of 0 by an infinity.

• Division of 0/0 or infinity/infinity.

• x REM y where x is infinity or y is 0.

• Square root of any number less than zero (but SQT(-0) is -0).

• Conversion to integer when overflow, infinity or NaN make it impossible.
If overflow makes a conversion to integer impossible, the largest positive or
negative integer is produced (depending on the sign of the operand) and
Invalid Operation is signalled.

• CMFE, CNFE when at least one operand is a NaN.

DZ - division by zero

The division-by-zero exception occurs if the divisor is zero and the dividend a finite,
non-zero number. A correctly-signed infinity is returned if the trap is disabled.

31 7 5 4 3 2 1 0

Reserved IXC UFCOFCDZCIOC

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-11

Open Access - Preliminary

OF - overflow

The OFC flag is set whenever the destination format's largest number is exceeded in
magnitude by what would have been the rounded result if the exponent range were
unbounded. The untrapped result returned is either:

• the correctly signed infinity

• the format's largest finite number

depending on the rounding mode.

UF - underflow

Two correlated events contribute to underflow:

1 Tininess
The creation of a tiny non-zero result smaller in magnitude than the format's
smallest normalized number.

2 Loss of accuracy
A loss of accuracy due to denormalization that may be greater than would be
caused by rounding alone.

If the underflow trap enable bit is set, the underflow exception occurs when tininess is
detected, regardless of loss of accuracy. If the trap is disabled, then tininess and loss
of accuracy must both be detected for the underflow flag to be set (in which case
inexact will also be signalled).

IX - inexact

The inexact exception occurs if:

• the rounded result of an operation is not exact (different from the value
computable with infinite precision)

• overflow has occurred while the OFE trap was disabled

• underflow has occurred while the UFE trap was disabled.

OFE or UFE traps take precedence over IXE.

9.5 The Floating-Point Control Register (FPCR)
The floating-point control register (FPCR) is an implementation-specific register:
it may not exist in some versions of the ARM floating-point system and, when it does
exist, it may contain different information for different versions of the system.

When present, it is used for internal communication within the floating-point system
and, in particular, to allow software and hardware components of the system
to communicate with each other.

Use of the WFC and RFC instructions outside the floating-point system itself is
strongly discouraged. In the case of User mode programs, it is actually prohibited:
the WFC and RFC instructions will trap if executed in User mode.

The FPCR within the ARM7500FE has an FPCR. It is used to enable and disable
the chip and to communicate information about instructions the hardware cannot
handle to the support code.

Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-12

Open Access - Preliminary

The FPA FPCR bit allocation is as follows:

31 RU Rounded-up bit

30 Reserved

29 Reserved

28 IE Inexact bit

27 MO Mantissa overflow

26 EO Exponent overflow

25 Reserved

24 Reserved

23-20 OP AU operation code

19;7 PR AU precision

18-16 S1 AU source register 1

15 OP AU operation code

14-12 DS AU destination register

11 SB Store bounce: decode (R14) to get opcode

10 AB Arithmetic bounce: opcode supplied in rest of word

9 RE Rounding Exception: Arithmetic bounce occurred during
rounding stage and destination register was written

8 DA Disable FPA

6-5 RM AU rounding mode

4 OP AU operation code

3-0 S2 AU source register 2 (bit 3 set denotes a constant)

All defined bits are cleared on reset, except bits 8, 10, and 11 (DA, AB, and SB) which
are set.

Apart from by using the WFC instruction, the AB bit can only be set by the arithmetic
unit and the SB bit can only be set by the load-store unit.

Only the arithmetic unit can write bits 31, 28:26, 23:12, 9, 7:0 of the FPCR.

The behavior of the FPCR when the RFC and WFC instructions are executed is as
follows:

• A read of the FPCR by RFC clears the SB, AB and DA bits of the FPCR, and
leaves the other bits of the FPCR unchanged.

• A write of the FPCR by WFC writes the SB, AB, & DA bits of the FPCR, and
leaves the other bits of the FPCR unchanged.

Note: This information about the FPCR in the FPA is only supplied to aid with modifications
to the FPA support code. Using it for any other purpose is likely to lead to compatibility
problems and is strongly discouraged.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RU R R IE MO EO R R OP PR S1 OP DS SB AB RE DA PR RM OP S2

ARM7500FE Data Sheet
ARM DDI 0077B

10-1

111

Open Access - Preliminary

This chapter lists the floating-point instruction set.

Note: Not all of the instructions detailed in this chapter are implemented in hardware on
the FPA; the remainder are supported by software emulation.

10.1 Floating-Point Coprocessor Data Transfer (CPDT) 10-2

10.2 Floating-Point Coprocessor Data Operations (CPDO) 10-7

10.3 Floating-Point Coprocessor Register Transfer (CPRT) 10-11

10.4 FPA Instruction Set 10-14

10.5 Floating-Point Support Code 10-16

10.6 Instruction Cycle Timing 10-17

Floating-Point Instruction Set10

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-2

Open Access - Preliminary

10.1 Floating-Point Coprocessor Data Transfer (CPDT)

10.1.1 LDF/STF - load and store floating

Load or Store the high-precision value from or to memory, using one of the five
memory formats.

On store, the value is rounded using the round to nearest rounding method to
the destination precision, or is precise if the destination has sufficient precision.
Thus, other rounding methods may be used by having applied a suitable floating-point
data operation at some time before the store; this does not compromise
the requirement of rounding once only since no additional rounding error is
introduced by the store instruction.

Cond condition field

P pre/post-indexing bit:

0 post-indexing
1 pre-indexing

U/D up/down bit

0 down
1 up

T1 transfer length (see below)

Wb write-back bit

L/S load/store bit

0 store to memory
1 load from memory

Rn base register

T0 transfer length (see below)

Fd floating-point register number

offset unsigned 8-bit immediate offset

The length field is encoded into bits 22 (T1) and 15 (T0) as follows:

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110P U/D T1 Wb L/S Rn T0 Fd 0001 offset

Precision bit 22 bit 15 FPSR.EP Data format size Note

Single S 0 0 x 1 memory word

Double D 0 1 x 2 memory words

Extended E 1 0 x 3 memory words

Packed decimal P 1 1 0 3 memory words 1

Expanded packed decimal EP 1 1 1 4 memory words 1

 Table 10-1: Length field

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-3

Open Access - Preliminary

Note 1: LDFP and STFP are deprecated instructions and are intended for
backwards compatibility only. These functions should be
implemented by appropriate calls to a library.

The offset in bits [7:0] is specified in words and is added to (U/D=1) or subtracted from
(U/D=0) a base register (Rn), either before (P=1) or after (P=0) the base is used as
the transfer address. The modified base value may be written back into the base
register (Wb=1) or the old value of the base may be preserved (Wb=0).

Note: Post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and
STR which always write-back when post-indexed. The value of the base register,
modified by the offset in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word (if more than one is transferred) will go
to or come from an address one word (4 bytes) higher than the first transfer, and
the address will be incremented by one word for each subsequent transfer.

10.1.2 Assembler syntax
<LDF|STF>{cond}<S|D|E|P> Fd,[Rn]

[Rn, <#expression>]{!}
[Rn],<#expression>

Pre-indexed addressing specification

[Rn] offset of zero

[Rn, #<expression>]{!} offset of <expression> bytes

{!} Write back the base register (set the Wb bit)
if ! is present.

Note: If Rn is R15, writeback should not be specified.

Post-indexed addressing specification

[Rn],#<expression> offset of <expression> bytes

Note: The assembler automatically sets the Wb bit in this case.
R15 should not be used as the base register where post-indexed addressing is used.
The <expression> must be divisible by 4 and be in the range -1020 to 1020.

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-4

Open Access - Preliminary

10.1.3 Load and store multiple floating instructions (LFM/SFM)

The Load/Store Multiple Floating instructions allow between 1 and 4 floating-point
registers to be transferred from/to memory in a single operation. These operations
allow groups of registers to be saved and restored efficiently (e.g. across context
switches).

Cond Condition field

P Pre/post-indexing bit:

0 post-indexing
1 pre-indexing

U/D Up/down bit:

0 down
1 up)

N1 Register count (see below)

Wb Write-back bit

L/S Load/store bit

0 store to memory
1 load from memory

Rn Base register

N0 Register count (see below)

Fd Floating-point register number offset - unsigned 8-bit immediate offset

The values are transferred as three words of data for each register; the data format
used is not defined (and may change in future implementations), and the only legal
operation that can be performed on this data is to load it back into the FPA using
the same implementation's LFM instruction. The data stored in memory by an SFM
instruction should not be used or modified by any user process.

Note: Coprocessor number 2 (bits 11-8 in the instruction field) rather than the usual FPA
coprocessor number of 1 must be used for these instructions.

The offset in bits [7:0] is specified in words and is added to (U/D=1) or subtracted from
(U/D=0) a base register (Rn), either before (P=1) or after (P=0) the base is used as
the transfer address. The modified base value may be written back into the base
register (Wb=1) or the old value of the base may be preserved (Wb=0). Note that
post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and
STR which always write-back when post-indexed. The value of the base register,
modified by the offset in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word will go to or come from an address one
word (4 bytes) higher than the first transfer, and the address will be incremented by
one word for each subsequent transfer.

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110P U/D N1 Wb L/S Rn N0 Fd 0010 offset

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-5

Open Access - Preliminary

10.1.4 Assembler syntax - form 1
<LFM|SFM>{cond} Fd,<count>, [Rn]

[Rn, #<expression>]{!}
[Rn],#<expression>

The first register to transfer is specified as Fd.

The number of registers to transfer is specified in the <count> field and is encoded in
bit 22 (N1) and bit 15 (N0) as follows:

Registers are always transferred in ascending order and wrap around at register F7.
For example:

SFM F6,4,[R0]

will transfer F6,F7,F0,F1 to memory starting at the address contained in register R0.

Pre-indexed addressing specification

[Rn] offset of zero

[Rn, #<expression>]{!} offset of <expression> bytes

{!} Write back the base register (set the Wb bit)
if ! is present.

Note: If Rn is R15, writeback should not be specified.

Post-indexed addressing specification

[Rn],#<expression> offset of <expression> bytes

Note: The assembler automatically sets the Wb bit in this case.
R15 should not be used as the base register where post-indexed addressing is used.
The <expression> must be divisible by 4 and be in the range -1020 to 1020.

 bit 22 bit 15 No. of registers to transfer

0 1 1

1 0 2

1 1 3

0 0 4

 Table 10-2: Count field

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-6

Open Access - Preliminary

10.1.5 Assembler syntax - form 2
<LFM|SFM>{cond}<FD,EA> Fd,<count>,[Rn]{!}

This form of the instruction is intended for stacking type operations on the
floating-point registers. The following table shows how the assembler mnemonics
translate into bits in the instruction:

FD,EA define pre/post indexing and the up/down bit by reference to the form of stack
required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index has
to be done (full) before storing to the stack.

The A and D refer to whether the stack is ascending or descending. If ascending,
an SFM will go up and LFM down; if descending, vice-versa.

Note: Only EA and FD are permitted: the LFM/SFM instructions are not capable of
supporting empty descending or full ascending stacks.

{!} Write back the base register (set the Wb bit) if ! is present.

Note: If Rn is R15, writeback should not be specified.

 Name Stack L bit P bit U bit

post-increment load LFMFD 1 0 1

pre-decrement load LFMEA 1 1 0

post-increment store SFMEA 0 0 1

pre-decrement store SFMFD 0 1 0

 Table 10-3: Assembler mnemonics

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-7

Open Access - Preliminary

10.2 Floating-Point Coprocessor Data Operations (CPDO)

where:

abcd opcode

j dyadic/monadic:

0 dyadic
1 monadic

ef destination size

gh rounding mode

i constant /Fm

10.2.1 Dyadic operations
<ADF|SUF|RSF|MUF|DVF|RDF|>{cond}<S|D|E>{P|M|Z} Fd, Fn, <Fm|#value>

<FML|FDV|FRD|RMF>

10.2.2 Monadic operations
<ABS|URD|NRM|MVF|MNF|SQT|RND>{cond}<S|D|E>{P|M|Z} Fd, <Fm|#value>

10.2.3 Library calls
It is recommended that the following floating-point operations are implemented with
calls to an appropriate library (for example, the C library):

• power

• reverse power

• polar angle

• logarithm base 10

• logarithm base e

• exponent

• sine

• cosine

• tangent

• arc sine

• arc cosine

• arc tangent

However, for backwards compatibility with existing floating-point code, the following
floating-point mnemonics are defined in the ARM floating-point instruction set.
These opcodes are treated by the FPA as undefined instructions, and must be
handled by support code, which is less efficient than using library calls.

<POW|RPW|POL> {cond} <S|D|E>{P|M|Z} Fd, Fn, <Fm|#value>
<LOG|LGN|EXP|SIN|COS|TAN|ASN|ACS|ATN> {cond}<S|D|E>{P|M|Z} Fd, <Fm|#value>

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abcd e Fn j Fd 0001 fgh0 i Fm

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-8

Open Access - Preliminary

abcdj Mnemonic Description Operation Note

00000 ADF Add Fd := Fn + Fm

00010 MUF Multiply Fd := Fn * Fm

00100 SUF Subtract Fd := Fn - Fm

00110 RSF Reverse Subtract Fd := Fm - Fn

01000 DVF Divide Fd := Fn / Fm

01010 RDF Reverse Divide Fd := Fm / Fn

01100 POW Power Fd := Fn raised to the power of Fm 1

01110 RPW Reverse Power Fd := Fm raised to the power of Fn 1

10000 RMF Remainder Fd := IEEE remainder of Fn / Fm

10010 FML Fast Multiply Fd := Fn * Fm

10100 FDV Fast Divide Fd := Fn / Fm

10110 FRD Fast Reverse Divide Fd := Fm / Fn

11000 POL Polar angle (ArcTan2) Fd := polar angle of (Fn, Fm) 1

11010 --- trap: undefined instruction

11100 --- trap: undefined instruction

11110 --- trap: undefined instruction

00001 MVF Move Fd := Fm

00011 MNF Move Negated Fd := - Fm

00101 ABS Absolute value Fd := ABS (Fm)

00111 RND Round to integral value Fd := integer value of Fm

01001 SQT Square root Fd := square root of Fm

01011 LOG Logarithm to base 10 Fd := log10 of Fm 1

01101 LGN Logarithm to base e Fd := loge of Fm 1

01111 EXP Exponent Fd := e ** Fm 1

10001 SIN Sine Fd := sine of Fm 1

10011 COS Cosine Fd := cosine of Fm 1

10101 TAN Tangent Fd := tangent of Fm 1

10111 ASN Arc Sine Fd := arcsine of Fm 1

 Table 10-4: Floating-point mnemonics

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-9

Open Access - Preliminary

11001 ACS Arc Cosine Fd := arccosine of Fm 1

11011 ATN Arc Tangent Fd := arctangent of Fm 1

11101 URD Unnormalized Round Fd := integer value of Fm, possibly in abnormal form

11111 NRM Normalize Fd := normalized form of Fm

abcdj Mnemonic Description Operation Note

 Table 10-4: Floating-point mnemonics

i Fm Value assigned Note

1000 0.0 3

1001 1.0 3

1010 2.0 3

1011 3.0 3

1100 4.0 3

1101 5.0 3

1110 0.5 3

1111 10.0 3

 Table 10-7: Constants

ef suffix Rounding precision Note

00 S IEEE Single precision 2

01 D IEEE Double precision 2

10 E IEEE Double Extended precision 2

11 trap: undefined instruction

 Table 10-5: Rounding precision

gh suffix Rounding Mode

00 Round to Nearest (default)

01 P Round towards Plus Infinity

10 M Round towards Minus Infinity

11 Z Round towards Zero

 Table 10-6: Rounding mode

Note 1: Deprecated instruction:
included for backwards compatibility only.

Note 2: The precision must be specified;
there is no default.

Note 3: These are specified when i=1.

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-10

Open Access - Preliminary

Additional notes

• FML, FRD, FDV are only defined to work with single precision operands.
It is not guaranteed that any particular implementation will execute the “fast”
instructions any quicker than their respective “normal” versions (MUF, DVF,
RDF).

• Directed rounding is done only at the last stage of a SIN, COS etc;
the intermediate calculations to compute the value are done with
round-to-nearest using the full working precision.

• The URD instruction performs the IEEE round-to-integer-value operation,
but may leave its result in an abnormal unnormalized form. The NRM
instruction converts this abnormal result into a proper floating-point value.

• Direct use of the result of a URD instruction by any instruction other than NRM
may produce unexpected results and should therefore not be done.
However, there is an exception to this rule, where a URD result may safely be
preserved and restored by STFE/LDFE or SFM/LFM before being processed
by NRM. So there is no need, for instance, to disable interrupts around
a URD/NRM instruction sequence.

• Similarly, the NRM instruction should only be used on an URD result.
Again, use of it on other values may produce unexpected results.

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-11

Open Access - Preliminary

10.3 Floating-Point Coprocessor Register Transfer (CPRT)

FLT{cond}<S|D|E>{P|M|Z} Fn, Rd

FIX{cond}{P|M|Z} Rd, Fm

<WFS|RFS|WFC|RFC>{cond} Rd

When L/S is:

1 the transfer is to an ARM register

0 the transfer is from an ARM register

Note 1: Supervisor-only Instructions

Definition of the efgh bits

The definition of the efgh bits is instruction-dependent:

FLT

ef destination size (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

gh rounding mode (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abc L/S e Fn Rd 0001 fgh1 i Fm

abc L/S Mnemonic Description Operation Note

0000 FLT Convert Integer to Floating-Point Fn := Rd

0001 FIX Convert Floating-Point to Integer Rd := Fm

0010 WFS Write Floating-Point Status Register FPSR := Rd

0011 RFS Read Floating-Point Status Register Rd := FPSR

0100 WFC Write Floating-Point Control Register FPCR:= Rd 1

0101 RFC Read Floating-Point Control Register Rd := FPCR 1

011x trap: undefined instruction

1000 trap: undefined instruction

1010 trap: undefined instruction

1100 trap: undefined instruction

1110 trap: undefined instruction

 Table 10-8: Coprocessor register transfer

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-12

Open Access - Preliminary

FIX

ef these bits are reserved and should be zero.

gh rounding mode (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

WFS,RFS,WFC,RFC

efgh these bits are reserved and should be zero.

Constants

Constants cannot be specified in the Fm field for the FIX instruction, as there is no
point FIXing a known value into an ARM integer register; it would be quicker to use
a MOV instruction.

10.3.1 Compare operations

Note: These are special cases of the general CPRT instruction, with Rd = 15 and L/S = 1.

<CMF|CNF|CMFE|CNFE>{cond} Fn, Fm

abc operation

i constant ROM/Fm
(see 10.2 Floating-Point Coprocessor Data Operations (CPDO) on
page 10-7)

efgh are reserved and should be zero

Compares

Compares are provided with and without the exception that could arise if the numbers
are unordered. When testing IEEE predicates, the CMF instruction should be used
to test for equality (i.e. when a BEQ or BNE will be used afterwards) or to test for
unorderdness (in the V flag). The CMFE instruction should be used for all other tests
(BGT, BGE, BLT, BLE afterwards). CMFE produces an exception if the numbers are
unordered, i.e. whenever at least one operand is a NaN. CMF only produces
an exception when at least one operand is a signalling NaN.

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abc 1 e Fn 1111 0001 fgh1 i Fm

abc Mnemonic Description Operation

100 CMF Compare floating compare Fn with Fm

101 CNF Compare negated floating compare Fn with -Fm

110 CMFE Compare floating with exception compare Fn with Fm

111 CNFE Compare negated floating with exception compare Fn with -Fm

 Table 10-9: Compare operations

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-13

Open Access - Preliminary

The ARM flags N, Z, C, V refer to the following after compares:

Note: That when two numbers are not equal N and C are not necessarily opposites:
if the result is unordered they will both be false.

Note: In this case, N and C are necessarily opposites.

Flag Description Clarification

N Less Than Fn less than Fm (or -Fm)

Z Equal

C Greater Than or Equal Fn greater than or equal to Fm

V Unordered

 Table 10-10: Flag settings when the AC bit in the FPSR is clear

Flag Description

N Less Than

Z Equal

C Greater Than or Equal or Unordered

V Unordered

 Table 10-11: Flag settings when the AC bit in the FPSR is set

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-14

Open Access - Preliminary

10.4 FPA Instruction Set
The FPA and support software together implement the ARM floating-point instruction
set as defined in the previous section. The FPA itself implements a subset of
the instruction set.

The FPA will not however execute arithmetic instructions in Table 10-12: Instructions
implemented in FPA on page 10-15 if one or more of the operands has one of
the following exceptional values (also known as uncommon values):

• Infinity

• NaN (Not a Number)

• Denormalized

• Illegal extended precision bit patterns

In this case the instruction will be 'bounced' to the software support code for emulation.

10.4.1 Infinities and NaNs
Infinities and NaNs should occur very rarely in normal code. Although not common,
there are a few 'normal' programs which frequently underflow and produce
denormalized numbers, in which case handling of denormalized operands in software
may cause a performance degradation. If necessary, this performance degradation
can be minimized by setting a bit in the status register which disables support for
denormalized numbers.

10.4.2 Exceptional conditions
Certain other exceptional conditions that arise during an operation will cause the FPA
to transfer that operation to the support code. These conditions include all cases of
the following IEEE exceptions:

• Invalid Operation

• Division by Zero

• Overflow

• Underflow

If the Inexact condition is detected, operation will only be transferred to the support
code if the Inexact trap enable bit is set in the Floating-Point Status Register. Some
other rare cases (such as mantissa overflow that occurs during the rounding stage of
a Store Floating instruction) that do not in fact produce an IEEE exception will also trap
to the support software.

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-15

Open Access - Preliminary

Mnemonic Instruction IEEE Required

LDF(S/D/E) Load (Single/Double/Extended) *

STF(S/D/E) Store (Single/Double/Extended) *

ADF Add *

SUF Subtract *

RSF Reverse Subtract

MUF Multiply *

DVF Divide *

RDF Reverse Divide

FML Fast Multiply

FDV Fast Divide

FRD Fast Reverse Divide

ABS Absolute

URD Round to Integral Value, possibly producing abnormal value

NRM Normalize result of URD

MVF Move *

MNF Move Negated

FLT Integer to floating point conversion *

FIX Floating-point to integer conversion *

WFS Write Floating-Point Status *

RFS Read Floating-Point Status *

WFC Write Floating-Point Control

RFC Read Floating-Point Control

CMF Compare Floating *

CNF Compare Negated Floating

CMFE Compare Floating with Exception *

CNFE Compare Negated Floating with Exception

LFM Load Floating Multiple (new to FPA)

SFM Store Floating Multiple (new to FPA)

 Table 10-12: Instructions implemented in FPA

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-16

Open Access - Preliminary

10.5 Floating-Point Support Code
Software support for the FPA includes the FPA support code (FPASC) and a
software-only floating-point emulator (FPE).

The FPA system and the FPE produce identical results; both systems are fully
IEEE-conformant. Both systems seamlessly implement the ARM floating-point
instruction set.

The purpose of the FPASC is to:

1 Emulate in software those instructions rejected by the FPA because they
involve uncommon values.

2 Provide support for exception conditions reported by the FPA.

3 Emulate in software those instructions in the floating point instruction set that
are not implemented in the FPA (see list above).

4 Emulate in software any instructions that are included for backwards
compatibility only; see However, for backwards compatibility with existing
floating-point code, the following floating-point mnemonics are defined in the
ARM floating-point instruction set. These opcodes are treated by the FPA as
undefined instructions, and must be handled by support code, which is less
efficient than using library calls. on page 10-7.

10.5.1 IEEE standard conformance
The full name of the IEEE Floating-Point Standard is as follows:

“IEEE Standard for Binary Floating-Point Arithmetic - ANSI/IEEE Std 754-1985”

This is referred to as the IEEE standard or merely as IEEE in this datasheet.

Note: The FPA hardware on its own is not IEEE-conformant.

Support software (the FPASC - FPA Support Code) is required to:

1 Implement the IEEE-required operations not provided by the FPA.

2 Handle operations on uncommon values which are bounced by the FPA.

3 Provide exception trap-handling capability.

Mnemonic Instructions IEEE Required

SQT Square Root *

RMF Remainder *

RND Round to Integral Value *

 Table 10-13: Instructions supported by software support code (FPASC)

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-17

Open Access - Preliminary

10.6 Instruction Cycle Timing
The following table shows the number of cycles that the FPA takes in executing each
instruction. Two numbers are given:

• the instruction latency

• the maximum instruction throughput

Notes:

1 Cannot be sustained for more than 2 cycles out of every 3 cycles.

2 May be less if the division comes out exactly, causing early termination of
the division algorithm (minimum of 6 cycles throughput, 7 cycles latency).

3 The latency may be 2 or 3 cycles, depending on the previous instruction.

Instruction Precision No. registers Throughput Latency Note

LDF/STF S 2 3

LDF/STF D 3 4

LDF/STF E 4 5

LFM/SFM 1 4 5

LFM/SFM 2 7 8

LFM/SFM 3 10 11

LFM/SFM 4 13 14

MVF/MNF/ABS S/D/E 1 2 1

ADF/SUF/RSF/URD/NRM S/D/E 2 4

MUF S/D/E 8 9

FML S/D/E 5 6

DVF/RDF/FDV/FRD S 30 31 2

DVF/RDF/FDV/FRD D 58 59 2

DVF/RDF/FDV/FRD E 70 71 2

FLT S/D/E 6 8

FIX 8 9

CMF/CMFE/CNF/CNFE 5 6

RFS/RFC 3 4 3

WFS/WFC 3 3

 Table 10-14: Instruction cycle timing

Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-18

Open Access - Preliminary

Throughput

Throughput is the number of cycles between the start of an instruction and the start of
a succeeding instruction of the same type, both instructions occurring in a long
sequence of instructions of the same type. To achieve the quoted throughput, register
dependencies and anti-dependencies must be avoided.

Latency

Latency is the number of cycles between the start of instruction execution and its
completion. The number of cycles taken by a sequence of floating point instructions,
each of which depends on the result of the preceding instruction in the sequence, can
generally be found by adding the latencies of the individual instructions. There may be
minor discrepancies from this rule for particular sequences.

The exact definition is dependent on the type of instruction being executed:

Arithmetic instructions From register read to register write.

LDF, LFM, FLT From start of instruction arbitration to
register write.

STF, SFM, CMF, FIX From register read to start of next instruction
arbitration.

WFS, WFC From start of instruction arbitration until
the next instruction would be deemed to start
by these rules.

RFS, RFC From the time that the previous instruction
would be deemed to end by these rules to
the start of the next instruction arbitration.

Note: Speculative execution, concurrent execution between arithmetic and load/store
instructions and concurrent execution between ARM integer instruction and FPA
instructions can significantly reduce the effective timings shown.

10.6.1 Instruction classification
Instructions can be classified into arithmetic , load/store and joint instructions:

Arithmetic Those instructions that execute completely within
the arithmetic unit. These include all the
hardware-implemented coprocessor data operations
(see 10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7).

Load/store Those instructions that execute completely within
the load/store unit. These include LDF, STF, LFM and SFM.

Joint arithmetic and load/store instructions

FIX, CMF,CNF,CMFE,CNFE Arithmetic followed by load/store.

FLT Load/store followed by arithmetic.

WFS,RFS,WFC,RFC Occupy both arithmetic and load/store units,
since the arithmetic unit must be empty
before any of these instructions may be
executed.

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-19

Open Access - Preliminary

10.6.2 Performance tuning
The FPA is capable of executing load/store and arithmetic instructions concurrently
and is also capable of executing instructions speculatively - i.e. before they have been
committed to execution by the ARM CPU. Both of these features can be exploited to
maximize the performance of the FPA. The code fragment shown below is a good
example of how this can be achieved:

1 SFM F0,4,[R0],#48
2 DVFS F0,F1,#3
3 SFM F4,4,[R0],#48
4 MOV R1,R2
5 MOV R3,R4

 Figure 10-1: Performance tuning

The labels 1, 2, 3, 4 & 5 indicate the cycles in which these instructions are fetched on
the CPD[31:0] bus, while A, B & C indicate the cycles in which the floating-point
instructions are issued to their respective units in the FPA.

The first store multiple instruction (1) is issued (A) to the load/store unit, resulting in
12 words of data being transferred on CPD[31:0] as shown by the shaded boxes on
the timing diagram. Meanwhile, the divide instruction (2) is issued (B) to the arithmetic
unit (AU), which then begins execution speculatively; its progress through the Prepare,
Calculate, Align and Round stages of the AU pipeline is shown by the shaded boxes
on the timing diagram.

The second SFM instruction (3) is issued (C) to the load/store unit as soon as it is
ready. This second SFM executes while the AU is still busy on the divide instruction;
the second set of shaded boxes on the CPD[31:0] bus indicates the 12 words of data
being transferred for the second SFM instruction. This example shows how the divide
instruction’s execution time can effectively be hidden by other instructions.

Note: The concurrency between ARM integer unit execution and FPA execution can also be
exploited. Contact ARM Ltd. for further details on optimizing floating-point code for
the FPA.

CPD[31:0]

CPCLK

Store_issue

Store_accepted

AU_issue

Prepare

Calculate

Align

Round

1 2 3 4 5

A

B

C

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-20

Open Access - Preliminary

