
StrongARM** SA-110
Microprocessor Instruction
Timing
Application Note

September 1998

Order Number: 278194-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The SA-110 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

**ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

SA-110 Microprocessor Instruction Timing
Contents
1.0 Introduction...1

2.0 The StrongARM Core...1

2.1 The StrongARM Pipeline...1
2.1.1 Instruction Fetching ..1
2.1.2 Multicycle Operations and Pipeline Stalls ..2
2.1.3 Result Bypasses...2

2.2 Instruction Timings ..3
2.2.1 Normal Instruction Processing ...3
2.2.2 Branch Instructions...4
2.2.3 Data Processing Instructions..5
2.2.4 Load Word, Load Byte, and Load Halfword Instructions7
2.2.5 Load Signed Halfword and Load Signed Byte Instructions10
2.2.6 Store Instructions ...11
2.2.7 Swap Instructions ...11
2.2.8 Load and Store Multiple Processing...12

2.2.8.1 Simple Load and Store Multiples...12
2.2.8.2 Load and Store Multiples of 0 or 1 Registers12
2.2.8.3 User Mode Load Multiple Instructions13
2.2.8.4 User Mode Store Multiple Instructions13

2.2.9 Multiplies ..13
2.2.10 MSR Instructions ..14
2.2.11 MRS Instructions ..15
2.2.12 MCR Instructions..15
2.2.13 MRC Instructions..15
2.2.14 Instructions with the PC as a Target ..15

2.2.14.1MOV pc,rx ...16
2.2.14.2Restore CPSR Data Processing Instructions

(MOVS pc,rx, etc.) ...17
2.2.14.3Load and Store Multiple Instructions Writing to the PC.............17

2.2.15 Reading the PC in 26-Bit Mode..18
2.2.16 Hardware Exception, Interrupt, and SWI Processing18

2.2.16.1Undefined Instruction Exception..18
2.2.16.2Software Interrupt..19
2.2.16.3Prefetch Abort ...19
2.2.16.4Data Abort ...19
2.2.16.5Interrupts ...20

3.0 The SA-110 Memory System ...21

3.1 The Structure of the Memory System..21
3.2 Clocking...23

3.2.1 Clocking Domains ..23
3.2.2 Phase of Generated MCLKs ..23
3.2.3 Clock Switching ..23
3.2.4 Bus Stalls ...25

3.3 Instruction Memory System Timing ...26
3.3.1 External Read Timing...26
Application Note iii

SA-110 Microprocessor Instruction Timing
3.3.2 Cache and TLB Hits ... 26
3.3.3 TLB Misses .. 26
3.3.4 Cache Misses, Uncacheable Instructions .. 27
3.3.5 Cache Misses, Cacheable Instructions .. 27
3.3.6 Instruction Side Coprocessor Access Timing... 27

3.4 Data Memory System Timing.. 28
3.4.1 External Read Timing... 28
3.4.2 Cache and TLB Hits ... 28
3.4.3 TLB Misses .. 28
3.4.4 Cache Misses, Uncacheable Data Reads.. 28
3.4.5 Cache Misses, Cacheable Data Reads.. 29
3.4.6 Reads Hitting the Write or Merge Buffer .. 30
3.4.7 Mergeable Writes Missing the Cache... 30
3.4.8 Non-Mergeable, Bufferable Writes Missing the Cache 30
3.4.9 Non-Bufferable Writes Missing the Cache ... 31
3.4.10 Swaps Missing the Cache.. 32
3.4.11 Data Side Coprocessor Access Timing.. 32

3.4.11.1System Coprocessor Register Reads 32
3.4.11.2System Coprocessor Register Writes 32

3.4.12 Write Buffer Timing .. 32
3.5 The Bus Interface Unit .. 33

3.5.1 Bus Accesses and Cycles .. 33
3.5.2 Bus Contention Resolution... 33
iv Application Note

SA-110 Microprocessor Instruction Timing
Figures

1 SA-110 Memory System ...22
2 Switching the DCLK Source to MCLK (Example 1)...23
3 Switching the DCLK Source to MCLK (Example 2)...24
4 Switching the DCLK Source to CCLK (Example 1) ...24
5 Switching the DCLK Source CCLK (Example 2) ...25

Tables

1 Pipeline Stages ...1
2 Normal Instruction Processing ..3
3 Branch Instruction Processing...4
4 Branch and Link Instruction Processing ..5
5 Register Shift Instruction Timing ...6
6 Register Conflict Between a Load Instruction and a Following Data

Processing Instruction ...7
7 Register Conflict Between a Load Instruction Base Register and a Following

Data Processing Instruction ..8
8 Cache Miss Followed by Data Processing Instruction ..9
9 Cache Miss Followed by Memory Access Instruction ...10
10 Swap Instruction..11
11 Simple Load Multiple Instruction ...12
12 MSR CPSR_c Timing..14
13 MSR CPSR_f Timing...14
14 MOV pc, rx Instruction Processing ..16
15 MOVS pc, r14 Instruction Processing ...17
16 Undefined Instruction Processing..18
17 SWI Processing...19
18 Interrupt Timing ...20
19 Single Word Reads by the Instruction Memory System26
20 Cache Line Fill by the Instruction Memory System ...27
21 Single Word Reads by the Data Memory System ...28
22 Cache Line Fill by the Data Memory System ..29
23 Non-Bufferable Write Timing ...31
Application Note v

SA-110 Microprocessor Instruction Timing
1.0 Introduction

The Intel StrongARM** SA-110 can be viewed as a StrongARM (SA-1) core and a Harvard
architecture memory system consisting of:

• A 16 KB instruction cache

• A 16 KB data cache

Instruction and data memory management units, each containing a 32-entry translation look aside
buffer:

• An 8-entry write buffer

• A bus interface unit to access external memory

• A system control coprocessor controlling the memory system

This document describes the behavior of the StrongARM core and memory system in sufficient
detail to allow the timing of any instruction sequence to be calculated. It assumes knowledge of the
ARM architecture and of the StrongARM technical reference manual as prerequisites.

2.0 The StrongARM Core

2.1 The StrongARM Pipeline

The StrongARM pipeline has the stages shown in Table 1.

Most instructions normally spend a single cycle in each stage. The following sections describe the
exceptional cases in which an instruction will spend more than one cycle in a single pipeline stage.

2.1.1 Instruction Fetching

The fetch stage is able to request an instruction from the Icache on every cycle. It will normally
request the instruction sequentially following the instruction in the decode stage.

Table 1. Pipeline Stages

Stage Action

0 Fetch stage - Fetch instruction from Icache or memory

1 Decode stage - Decode instruction, read input values from register file

2 Execute stage - Shifts and arithmetic (except multiplies)

3 Buffer stage - Data cache or memory access, multiplies, and system coprocessor access

4 Writeback - Write output values to register file
Application Note 1

SA-110 Microprocessor Instruction Timing
2.1.2 Multicycle Operations and Pipeline Stalls

Instructions may require more than one cycle in a pipeline stage for a number of reasons. Later
sections describe precisely when this happens, but some of the reasons are:

• The instruction is waiting for the result of a previous instruction.

• The instruction inherently takes more than one cycle. An example of this would be a multiply
instruction, which, depending on its arguments, may spend up to 3 cycles in the multiplier.

• The instruction is doing a memory access (or being fetched from memory) and this takes more
than 1 cycle.

If, as a result of an instruction spending more than one cycle in a pipeline stage, the next pipeline
stage becomes empty, then the processor will place a null instruction in this next pipeline stage.
Once a null instruction is in the pipeline, it will spend one cycle in each remaining pipeline stage,
unless the pipeline is stalled. A null instruction will always remain in the pipeline until it reaches
the end of the pipeline.

An instruction will move between pipeline stages once it has completed the current pipeline stage
and the next pipeline stage is available. If it completes its current pipeline stage before the next
pipeline stage is available, it will stall in the current pipeline stage. This will normally stall all
previous pipeline stages. If, however, a previous pipeline stage is executing a multicycle operation,
then that stage will not stall until the multicycle operation completes.

Swaps, load and store multiples, and long multiplies are special cases. The processor fetches and
decodes each of these as a single instruction, but the decode stage passes multiple instructions in
the execute, buffer and writeback stages. Each of these generated instructions fills a slot in the
pipeline, and will spend one or more cycles in each pipeline stage. The sections discussing these
instructions give more details.

2.1.3 Result Bypasses

The StrongARM core contains a number of result bypasses. These normally allow the processor to
use the results of one instruction in a following instruction as soon as it has been generated (and
before it has been written back to the register file). In particular, almost every instruction can read
its inputs from the bypasses as it enters the execute stage if these inputs are not yet in the register
file in the decode stage. Later sections describe, in detail, the effects of these bypasses, and the few
cases where these bypasses are not used.
2 Application Note

SA-110 Microprocessor Instruction Timing
2.2 Instruction Timings

2.2.1 Normal Instruction Processing

Table 2 shows how the processor processes most instructions if the pipeline does not stall, and if all
instructions are immediately available from the Icache. The sections that follow describe the cases
that do not follow this pattern.

Table 2. Normal Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode
instruction at X - - -

3 Fetch from X+8
Decode
instruction at
X+4

Execute
instruction at X - -

4 -
Decode
instruction at
X+8

Execute
instruction at
X+4

Perform memory
accesses, etc. for
instruction at X

-

5 - -
Execute
instruction at
X+8

Perform memory
accesses, etc. for
instruction at X+4

Write results of
instruction at X to
register file

6 - - -
Perform memory
accesses, etc. for
instruction at X+8

Write results of
instruction at X+4 to
register file

7 - - - -
Write results of
instruction at X+8 to
register file
Application Note 3

SA-110 Microprocessor Instruction Timing
2.2.2 Branch Instructions

A branch instruction of the form B Y at address X behaves as shown in Table 3.

Note that the processor calculates the destination in the decode stage and that a simple branch
instruction does not use the execute, buffer, or writeback stages. If the fetch from X+4 misses the
Icache or I-TLB, then the external fetch, cache line read, or fetch of the page table entry will
complete before the processor fetches the instruction at Y. Note that if the fetch from X+4 misses
both the Icache and the I-TLB, then the processor will only fetch the page table entry before
fetching the instruction at Y. The branch instruction will stall before fetching from Y if, on cycle 3,
the previous instruction is stalled in, or is still using, the execute stage.

Table 3. Branch Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode branch

(B Y) - - -

3 Fetch from Y Do nothing
No issue from
decode (do
nothing)

- -

4 - Decode
instruction at Y Do nothing Do nothing -

5 - - Execute
instruction at Y Do nothing Do nothing

6 - - -
Perform memory
accesses, etc. for
instruction at Y

Do nothing

7 - - - -
Write results of
instruction at Y to
register file
4 Application Note

SA-110 Microprocessor Instruction Timing
A BL instruction of the form BL Y behaves exactly like the simultaneous execution of a B Y
instruction and a SUB lr,pc,#4 instruction (using a PC value of X+8). See Table 4.

2.2.3 Data Processing Instructions

The processor normally processes data processing instructions at a rate of one instruction per cycle.
The result of a data processing instruction is available, through bypasses, as soon as it has
completed the execute stage of the pipeline. Any data processing instruction can read its inputs
from the bypasses at the start of the execute stage.

The circumstances under which a data processing instruction will stall in the decode stage are:

• The previous instruction, which may be a null instruction, is still using or is stalled in the
execute stage.

• The instruction requires a result generated by the buffer stage of a previous instruction (a
memory access instruction, multiply, or system coprocessor access instruction), and that result
is not yet available.

A data processing instruction will only stall in the execute stage if the buffer stage is still in use by
the previous instruction.

Table 4. Branch and Link Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode branch

(BL Y) - - -

3 Fetch from Y Do nothing Execute

SUB lr,pc,#4 - -

4 - Decode
instruction at Y Do nothing Pass lr to

writeback stage -

5 - - Execute
instruction at Y Do nothing Write lr to

register file

6 - - -

Perform
memory
accesses, etc.
for instruction at
Y

Do nothing

7 - - - -

Write results of
instruction at Y
written to
register file
Application Note 5

SA-110 Microprocessor Instruction Timing
All data processing instructions except those involving shifts by a register value require only
1 cycle in the execute and buffer stages. Data processing instructions involving shifts or rotations
by a register value (a register shift instruction) require two cycles in the execute stage. When the
processor executes a register shift instruction, the processor will not decode the following
instruction until the second execute cycle. As an example of this, Table 5 shows the behavior of the
following instruction sequence:

0 MOV r1, r2

4 MOV r3, r4, ROR r5

8 MOV r6, r7

The table assumes that all fetches hit the Icache and I-TLB.

Table 5. Register Shift Instruction Timing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode

MOV r1, r2.
Load r2 from
register file

- - -

3 Fetch from X+8

Decode MOVr3,
r4, ROR r5.
Load registers
from register file

Execute

MOV r1,r2 - -

4 Do nothing Do nothing
Execute
MOVr3, r4,
ROR r5

cycle 1 Buffer new
value of r1 -

5 Fetch from X+12 Decode

MOV r6, r7.
Load r7 from
register file

Execute
MOVr3, r4,
ROR r5

cycle 2 Do nothing Write r1 to
register file

6 - - Execute

MOV r6, r7 Buffer new
value of r3 Do nothing

7 - - - Buffer new
value of r6

Write r3 to
register file

8 - - - - Write r6 to
register file
6 Application Note

SA-110 Microprocessor Instruction Timing
2.2.4 Load Word, Load Byte, and Load Halfword Instructions

These load instructions, when they hit the Dcache (and D-TLBs), require one cycle in each pipeline
stage. On a cache or TLB miss, the load instructions stay in the buffer stage until the requested data
is available. They can read their inputs either from the register file during the decode stage, or from
bypasses during the execute stage.

A load instruction may have 2 results:

• An updated base register. This is available through bypasses on completion of the execute stage.

• The value loaded. This is available through bypasses as soon as the load instruction leaves the
buffer stage.

A load instruction will stall in the decode stage if:

• The execute stage is still in use by the previous instruction, or the previous instruction (which
may be a NULL instruction) is stalled in the execute stage.

• The instruction requires a result generated by the buffer stage of a previous instruction (a
memory access instruction, multiply, or system coprocessor access instruction), and that result
is not yet available.

A load instruction will stall in the execute stage if the buffer stage is busy. Being busy means that
either the previous instruction is still in the buffer stage, or that a previous instruction caused the
Dcache to start a cache line fill that has not yet completed. Note that this is different from the
conditions under which a data processing instruction stalls.

Table 6 shows the behavior of a load instruction followed by a data processing instruction that uses
the result of the load instruction. The instruction sequence illustrated is:

0 LDR r1, [r0,+4]!

4 MOV r2, r1

It assumes that the load hits the cache.

Table 6. Register Conflict Between a Load Instruction and a Following Data Processing
Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode LDR r1,
[r0,+4] - - -

3 Fetch from X+8 Decode

MOV r2, r1 Calculate r0+4 - -

4 Do nothing Do nothing Do nothing Read contents of
r0+4 from cache -

5 Fetch from X+12 Decode
instruction at X+8 Execute

MOV r2, r1
using bypass
as input

Do nothing Write new r0 and
r1 to register file

6 - - - Buffer new r2 Do nothing

7 - - - - Write new r2 to
register file
Application Note 7

SA-110 Microprocessor Instruction Timing
For comparison, the following sequence, illustrated in Table 7, shows that the updated base register
is available one cycle earlier. The instruction sequence considered is:

0 LDR r1, [r0,+4]!

4 MOV r2, r0

It assumes that the load hits the cache.

Table 7. Register Conflict Between a Load Instruction Base Register and a Following Data
Processing Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode LDR
r1, [r0,+4] - - -

3 Fetch from X+8 Decode

MOV r2, r0 Calculate r0+4 - -

4 Fetch from
X+12

Decode
instruction at
X+8

Execute

MOV r2, r0
using bypass
as input

Read contents
of r0+4 from
cache

-

5 - - - Buffer new r2
Write new r0
and r1 to
register file

6 - - - - Write new r2 to
register file
8 Application Note

SA-110 Microprocessor Instruction Timing
Table 8 and Table 9 illustrate that a cache miss stalls a following load instruction for far longer than
it stalls a following data processing instruction. Table 8 illustrates the timing of the sequence:

0 LDR r1, [r0]

4 MOV r3, r4

where the load misses the data cache.

Table 8. Cache Miss Followed by Data Processing Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode

LDR r1, [r0] - - -

3 Fetch from X+8 Decode

MOV r3, r4 Calculate target
address (r0) - -

4 Fetch from
X+12

Decode
instruction at
X+8

Execute

MOV r3, r4
Attempt to read
data at r0 from
cache and miss

-

5 Do nothing Do nothing Do nothing Start cache fill Do nothing

… … … … … …

n Do nothing Do nothing Do nothing
Data from r0
read from
memory

Do nothing

n+1 Fetch from
X+16

Decode
instruction at
X+12

Execute
instruction at
X+8

Buffer new r3
and continue
cache fill

Write new r1 to
register file

n+2 - - - - Write new r3 to
register file
Application Note 9

SA-110 Microprocessor Instruction Timing
Table 9 shows the timing of the sequence:

0 LDR r1, [r0]

4 LDR r3, [r2]

where the first load misses the cache.

2.2.5 Load Signed Halfword and Load Signed Byte Instructions

These require at least 2 cycles in the buffer stage even if they hit the Dcache. If they miss the
Dcache, they require no extra cycles beyond those required to fetch the data from the Dcache.
Their timing is otherwise identical to load halfword and load byte instructions.

Table 9. Cache Miss Followed by Memory Access Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode

LDR r1, [r0] - - -

3 Fetch from X+8 Decode

LDR r3, [r2] Calculate target
address (r0) - -

4 Fetch from
X+12

Decode
instruction at
X+8

Calculate target
address (r3)

Attempt to read
data at r0 from
cache and miss

-

5 Do nothing Do nothing Do nothing Start cache fill Do nothing

… … … … … …

n Do nothing Do nothing Do nothing
Data from r0
read from
memory

Do nothing

n+1 Do nothing Do nothing Do nothing Continue cache
fill

Write new r1 to
register file

… … … … … …

m Do nothing Do nothing Do nothing Read final word
of cache line Do nothing

m+1 Fetch from
X+16

Decode
instruction at
X+12

Execute
instruction at
X+8

Read data at r3
from cache Do nothing

m+2 - - - - Write new r4 to
register file
10 Application Note

SA-110 Microprocessor Instruction Timing
2.2.6 Store Instructions

Store instructions, when they hit the Dcache, normally require one cycle in each pipeline stage.
They will require extra cycles in the buffer stage if:

• The address is neither cached nor bufferable

• The address is not cached and the write buffer is full

• The page table entry has to be read from external memory (it is not in the D-TLBs)

On a TLB miss, a store instruction stays in the buffer stage until the processor has read the required
page table entries. Store instructions can read their inputs either from the register file during the
decode stage, or from bypasses during the execute stage.

The only result a store instruction ever produces is an updated base register. This is available
through bypasses when the instruction completes its execute stage.

A store instruction will stall in the decode stage if:

• The execute stage is still in use by the previous instruction, or the previous instruction (which
may be a NULL instruction) is stalled in the execute stage.

• The instruction requires a result generated by the buffer stage of a previous instruction (a
memory access instruction, multiply, or system coprocessor access instruction), and that result
is not yet available.

A store instruction will stall in the execute stage if the buffer stage is busy.

2.2.7 Swap Instructions

A SWP or SWPB instruction behaves for timing purposes like a load instruction followed by a
store instruction. Table 10 illustrates the timing of SWP r1,r2,[r0] on the assumption that the data is
in the cache.

Note: If the swap address is cacheable, but not cached, then the SWP-load will miss the cache, and the
SWP-store will not enter the buffer stage until the cache line fill has completed.

Table 10. Swap Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4

Decode SWP
r1, r2, [r0]. Read
r0 from register
file.

- - -

3 Do nothing Read r2 from
register file

Calculate target
address (r0) - -

4 Fetch from X+8
Decode
instruction at
X+4

Calculate target
address (r0)

Read [r0] from
cache -

5 - - -
Write contents
of r2 to [r0] in
cache

Write new r1

6 - - - - Do nothing
Application Note 11

SA-110 Microprocessor Instruction Timing
2.2.8 Load and Store Multiple Processing

2.2.8.1 Simple Load and Store Multiples

Load and store multiples may be:

• Not in user mode

• Able to load or store at least 2 registers

Under these conditions, they take 1 pipe entry per register and have the same timing as the equivalent
sequence of loads or stores would have. In particular, each component (single load or store) of a load
or store multiple stalls under the same conditions as the equivalent load or store would.

Table 11 illustrates this for the case of LDMIA r1, {r2, r3, r4} where all data is already in the cache.

If the instruction is to write back the base register, then the processor calculates its new value on
the final execute cycle. The processor writes this new value to the register file on the final
writeback cycle (the cycle after the final buffer cycle). As usual, most instructions can use bypasses
to read the new value as soon as the execute cycle is complete.

Note that the buffer stage treats each component as a separate load or store instruction. This means
that if a component causes a cache fill, then the next component cannot enter the buffer stage until
that cache fill is complete.

2.2.8.2 Load and Store Multiples of 0 or 1 Registers

Load and store multiples of 0 or 1 registers always fill 2 pipe entries. The load or store, if any, starts
on the first buffer cycle. The second execute cycle calculates the final base register value.

Table 11. Simple Load Multiple Instruction

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4

Decode LDMIA
r1, {r2, r3, r4}.
Read r1 from
register file

- - -

3 Do nothing Do nothing Calculate target
address (r1) - -

4 Do nothing Do nothing Calculate target
address (r1+4)

Read [r1] from
cache -

5 Fetch from X+8
Decode
instruction at
X+4

Calculate target
address (r1+8)

Read [r1+4]
from cache Write new r2

6 - - - Read [r1+8]
from cache Write new r3

7 - - - - Write new r4
12 Application Note

SA-110 Microprocessor Instruction Timing
2.2.8.3 User Mode Load Multiple Instructions

The processor does not allow any further instructions to enter the execute stage until the final load
has completed its writeback stage.

2.2.8.4 User Mode Store Multiple Instructions

After decoding a user mode store multiple instruction, the decode stage will stall for at least
2 cycles and until all previous instructions have completed their writeback stages.

2.2.9 Multiplies

The multiplier-accumulator is a separate unit running in parallel with the execute (E) and buffer (B)
stages of the pipe. However, use of the multiplier blocks other instructions from using the execute
and buffer stages of the pipe for one or more cycles. For calculating instruction timing, the
multiplier portion occupying the E-stage and the accumulator in the B-stage of the pipeline can be
viewed as follows:

• The E-stage (multiply array) takes 1-3 cycles depending on the value of Rs.

• The B-stage takes one cycle for a MUL or MLA and two cycles for a UMULL, SMULL,
UMLAL or SMLAL; one cycle for a 32-bit result, and two cycles for a 64-bit result.

The multiplier supports signed early termination on Rs, and retires 11 bits on the first buffer stage
cycle and 12 bits on the second buffer stage cycle. In other words, if bits 31 to 11 are all 0 or all 1,
then the multiply will spend only one cycle in the execute stage. If bits 31 to 23 (but not 31 to 11)
are all 0 or all 1, then the multiply will spend two cycles in the execute stage. If neither of these is
true, it will spend three cycles in the execute stage.

A multiply can read its inputs through bypasses at the start of the execute stage. The result of a
multiply becomes available through bypasses when the instruction leaves the buffer stage.

If there are two consecutive multiplies in the instruction stream, then the second multiply stalls in the
decode stage, and does not enter the execute stage until the first multiply completes its buffer stage.

A multiply can enter the buffer stage as soon as the previous instruction leaves the buffer stage.
Outstanding cache fills do not prevent a multiply from entering the buffer stage.

A long multiply takes one extra cycle. The multiplier outputs RdLo first, then RdHi in the last
buffer stage cycle.

If a multiply sets the condition code, there will be at least a 3-cycle delay between the multiply
entering the execute stage and the next instruction entering the execute stage. This is due to the
need to feed back the condition codes from the B-stage for conditional execution, requiring an
additional cycle and a NUL instruction bubble in the E-stage.

The timings of multiply and accumulate instructions are the same as those of multiply instructions.
Application Note 13

SA-110 Microprocessor Instruction Timing
2.2.10 MSR Instructions

Any MSR instruction that sets the CPSR mode bits (including the I and F bits) introduces three
empty slots into the pipe. Table 12 illustrates the timing of MSR CPSR_c, r0.

This sequence means that if the fetch of the next instruction hits the I-TLBs and Icache, permission
faults on fetching this instruction are based on the old value of the CPSR. If it misses the I-TLBs or
Icache, the processor will use the new value of the CPSR to check for permission faults.

Any MSR instruction that sets the CPSR condition code bits (but not the mode bits) introduces two
empty slots into the pipe. Table 13 illustrates this for the instruction MSR CPSR_f, r0.

MSR instructions writing to an SPSR are single-cycle instructions that do not introduce any extra
delays.

Table 12. MSR CPSR_c Timing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode MSR
CPSR_c, r0 - - -

3 Do nothing Do nothing Execute MSR
(cycle 1) - -

4 Do nothing Do nothing Set new mode Do nothing -

5 Do nothing Do nothing Do nothing Do nothing Do nothing

6 Fetch from X+8
Decode
instruction at
X+4

Do nothing Do nothing Do nothing

7 - - - Do nothing Do nothing

8 - - - - Do nothing

Table 13. MSR CPSR_f Timing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode MSR
CPSR_c, r0 - - -

3 Do nothing
Decode
instruction at
X+4

Execute MSR - -

4 Do nothing Do nothing Set new flag bits Do nothing -

5 Fetch from X+8 Do nothing Do nothing Do nothing Do nothing

7 -
Decode
instruction at
X+8

Execute
instruction at
X+4

Do nothing Do nothing

8 - - - - Do nothing
14 Application Note

SA-110 Microprocessor Instruction Timing
2.2.11 MRS Instructions

An MRS instruction has the same timing as a single-cycle data processing instruction. The CPSR
or SPSR is read in the execute stage.

2.2.12 MCR Instructions

An MCR instruction cannot read from the register bypasses. As such, it has to wait for any
preceding instruction that writes to its input register to complete its writeback stage before the
MCR instruction can enter its execute stage. MCR instructions cannot enter the buffer stage while
there is a cache fill in progress.

2.2.13 MRC Instructions

An MRC instruction has the same timing as a single-cycle load. An MRC instruction cannot enter
the buffer stage while there is a cache fill in progress.

2.2.14 Instructions with the PC as a Target

Once the decode stage has identified that the current instruction has the PC as a target, it stops
fetching or decoding further instructions until the new value of the PC is available (normally
through bypasses). For most instruction types, the timing of the instruction that sets the PC is
identical to the timing of an equivalent

 instruction setting any other register. The fetch stage will, however, have already started to fetch
the instruction that follows the instruction that writes to the PC. The processor starts to fetch the
instruction at the new PC on the cycle on which the new PC becomes available.

The result of this is that if the sequence:

INSTR1 rx,... ; rx is a target of this instruction

INSTR2 ...,rx ; rx is an input to this instruction

starts executing INSTR2 on cycle n, then in the sequence:

INSTR1 pc,... ; Instruction with pc target

.

.

.

INSTR3 ... ; Instruction at new pc.

INSTR3 will first be requested from the Icache on cycle n.

This means that if there are no other stalls or interlocks, a data processing instruction with the PC
as its target will leave two empty slots in the pipe, and a load instruction will leave three empty
slots in the pipe.

The sections that follow describe special cases that do not follow these rules.
Application Note 15

SA-110 Microprocessor Instruction Timing
2.2.14.1 MOV pc,rx

Special paths exist within the processor to ensure that instructions of the form MOV pc,rx only
leave one empty slot in the pipe.

If rx contains Y, the following instruction at address X behaves as shown in Table 14:

MOV pc, rx

The MOV instruction will stall in the decode stage, before starting the new fetch, if rx is the
destination of a previous instruction that is not yet in its writeback stage in cycle 2. The MOV pc,
rx instruction cannot use bypasses to read rx. It will also stall without starting the fetch if, on
cycle 3, the previous instruction is still using, or is stalled in, the execute stage.

If there are no such stalls and no register conflicts, a MOV rx, pc instruction will leave one empty
slot in the pipe. A register conflict (even with a data processing instruction) can leave up to three
empty slots in the pipe.

Note: A surprising consequence of not using bypasses is that the instruction sequence:

MOV r3, r2 ; Or any other data processing instruction
writing r3.

ADD pc, r3, #0

is, on StrongARM, one cycle faster than the sequence:

MOV r3, r2

MOV pc, r3

Only instructions of the form MOV pc, rx use the special path described in this section. In
particular, MOVS pc, rx instructions and MOV pc,<shifter_operand> instructions in which
<shifter_operand> is more complex than an unmodified register do not use this path.

Table 14. MOV pc, rx Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode
instruction at X

(MOV pc,rx) - - -

3 Fetch from Y Do nothing Do nothing - -

4 - Decode
instruction at Y Do nothing Do nothing -

5 - - - Do nothing Do nothing

6 - - - - Do nothing

7 - - - -

Write results of
instruction at Y
written to
register file
16 Application Note

SA-110 Microprocessor Instruction Timing
2.2.14.2 Restore CPSR Data Processing Instructions (MOVS pc,rx, etc.)

Any restore CPSR instruction will introduce at least three empty slots into the pipe between
decoding the restore CPSR instruction and decoding the instruction at the return address. Table 15
shows, as an example, the timing for MOVS pc,r14 assuming that r14 contains Y.

2.2.14.3 Load and Store Multiple Instructions Writing to the PC

These instructions behave as defined in Section 2.2.8. The PC can be updated as the base register
(data loads from the instruction stream) or as the last register in the register list:

LDMIA pc!, {r4, r5, r6}

If the PC is the base register, it will start simultaneously with the final load:

LDMIA r0, {r4, r5, r6, ……pc}

If the PC is the last load target, the fetch of the branch destination will start in the cycle following
completion of the final load.

Table 15. MOVS pc, r14 Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode
instruction at X

(MOVS pc,r14) - - -

3 Do nothing Do nothing Execute MOVS
pc,r14 - -

4 Do nothing Do nothing Do nothing
Buffer MOVS
pc,r14 (update
CPSR)

-

5 Fetch from Y Do nothing Do nothing Do nothing Do nothing

6 - Decode
instruction at Y Do nothing Do nothing Do nothing

7 - - Execute
instruction at Y Do nothing Do nothing

8 - - - Buffer
instruction at Y Do nothing

9 - - - -
Write results of
instruction at Y
to register file
Application Note 17

SA-110 Microprocessor Instruction Timing
2.2.15 Reading the PC in 26-Bit Mode

Consider the case where, in 26-bit mode, a data processing instruction (not a multiply) sets the
condition code and the following instruction is:

• A BL instruction.

• Any instruction, except swaps, with bits 0 to 3 of the instruction set to 15 and bits 25 to 27 set
to 0. This includes data processing instructions for which register 15 is the rm argument, but
also includes certain other instructions such as LDRH r0, [r1, #15].

• A swap or swap byte using register 15 for Rd (the destination register).

• A store instruction for which register 15 is the register to be stored.

The second instruction will then stall in the decode stage for one cycle after the first instruction
leaves the execute stage.

2.2.16 Hardware Exception, Interrupt, and SWI Processing

2.2.16.1 Undefined Instruction Exception

Table 16 shows the timing of an undefined instruction.

If the execute or buffer stage stalls at the end of cycle 2, then the processor puts one less bubble in the
pipe (i.e., cycle 3 executes in the decode stage on the cycle following cycle 2 even if the pipe is stalled).

All other stalls will stall the pipe as usual.

Table 16. Undefined Instruction Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode
instruction at X

(undefined) - - -

3 Do nothing Second decode
cycle Do nothing - -

4 Fetch from X+8 Do nothing Calculate new r14 Do nothing -

5 Fetch from X+12 Do nothing Do nothing Buffer new r14 Do nothing

6 Fetch from 4 Do nothing
Set new CPSR
and SPSR (at
start of cycle)

Do nothing Write back new
r14

7 - Decode
instruction at 4 Do nothing Do nothing Do nothing

8 - - Execute
instruction at 4 Do nothing Do nothing

9 - - - Buffer instruction
at 4 Do nothing

10 - - - -
Writeback
results of
instruction at 4
18 Application Note

SA-110 Microprocessor Instruction Timing
2.2.16.2 Software Interrupt

The timing of a software interrupt is shown in Table 17.

2.2.16.3 Prefetch Abort

Once the fetch stage has seen an abort, it will stop fetching instructions. An explicit change to the
PC, caused either by taking an exception or by executing a branch instruction or an instruction that
writes to the PC, will restart instruction fetch.

Otherwise, the timing of a prefetch abort is identical to the timing of an SWI, i.e., it puts three
bubbles in the pipeline.

2.2.16.4 Data Abort

If a data abort occurs, the processor fetches the instruction at address 0x10 and changes the CPSR
on the cycle following the data abort. Furthermore, a data abort cancels all stalls and prevents any
results from instructions in the pipeline from being written back.

Table 17. SWI Processing

Cycle Fetch Stage Decode Stage Execute Stage Buffer Stage Writeback
Stage

1 Fetch from X - - - -

2 Fetch from X+4 Decode
instruction at X

(SWI) - - -

3 Fetch from X+8 Do nothing Calculate new
r14 Do nothing -

4 Fetch from
X+12 Do nothing Do nothing Buffer new r14 Do nothing

5 Fetch from 8 Do nothing
Set new CPSR
and SPSR (at
start of cycle)

Do nothing Write back new
r14

6 - Decode
instruction at 8 Do nothing Do nothing Do nothing

7 - - Execute
instruction at 8 Do nothing Do nothing

8 - - - Buffer
instruction at 8 Do nothing

9 - - - -
Writeback
results of
instruction at 8
Application Note 19

SA-110 Microprocessor Instruction Timing

or core

hen the
the

2-cycle
sor
ses of

 is

ycles.
2.2.16.5 Interrupts

The timing for IRQs and FIQs is identical. The timing is controlled as follows:

· There is a delay of two core cycles between the interrupt pin changing state and the process
seeing the change. This delay is unaffected by any pipe stalls.

· Once the interrupt reaches the core, it checks whether interrupts are enabled. If they are, t
processor stalls the fetch stage until the instruction pipe is empty, interrupts are disabled, or
core sees the interrupt being cleared.

· On each cycle following this, the core checks the state of the pipe. Once there has been a
delay after the last instruction leaves the buffer stage, then on the following cycle the proces
updates the CPSR and fetches the instruction in the interrupt vector. Note that for the purpo
checking, the pipe instructions that fail their condition code check are ignored.

Typical timing of an interrupt is show in Table 18.

If an instruction enables interrupts, then this does not take effect for 2 cycles after the CPSR
modified. If an instruction disables interrupts, then this takes effect immediately. As such, the
processor only acts on interrupts if interrupts have been enabled for at least 2 consecutive c

Table 18. Interrupt Timing

Cycle Action

1 nIRQ asserts

2

3 Interrupt reaches core

4 Fetch stopped, last instruction in decode

5

6

7 Last instruction in writeback

8

9

10 Instruction at 0x18 fetched
20 Application Note

SA-110 Microprocessor Instruction Timing
3.0 The SA-110 Memory System

3.1 The Structure of the Memory System

The SA-110 has independent internal instruction and data memory systems. Both of them access a
common external memory system through a common bus interface unit (BIU). The system
coprocessor controls the two memory systems. This coprocessor is implemented as a set of
registers in the data memory system. The instruction memory system contains duplicates of those
registers that affect its behavior. These duplicates are write-only registers.

The StrongARM core fetches instructions from the instruction memory system. It contains the
instruction cache (Icache) and a translation lookaside buffer (TLB) containing 32 entries. The
Icache is 16 KB read-only cache consisting of 512 lines of 32 bytes. It is organized as a 32-way
associative cache and is virtually addressed.

The StrongARM core passes all data accesses resulting from memory access instructions to the
data memory system. It contains the data cache (Dcache), a 32-entry TLB, a write merge buffer and
an 8-entry write buffer. The Dcache is a 16KB write-back cache consisting of 512 lines of 32 bytes.
It is organized as a 32-way set associative cache and is virtually addressed. The write merge buffer
is 16 bytes wide, and will merge consecutive mergeable writes to the same half cache line. It is
only flushed into the write buffer when:

• The write buffer is explicitly flushed

• A non-mergeable write occurs

• A write occurs to a different half cache line

The write buffer contains 8 entries of 16 bytes each. All writes, even non-bufferable writes, go
through the write buffer. The processor performs a non-bufferable write by placing the data in the
write buffer and then flushing the write buffer.

Although the instruction and data TLBs are separate, they share a single page table base and hence
a single set of page tables.

The BIU controls the order of external bus accesses when there is more than one access
outstanding. It also performs the actual external bus cycles.

The memory system also controls clock switching. The StrongARM core will run at the core clock
speed when there is no external access (if clock switching is enabled). It switches to running at the
bus clock speed when an external access is in progress.
Application Note 21

SA-110 Microprocessor Instruction Timing
Figure 1 shows the structure of and the command and data flows in the SA-110’s memory system.

Figure 1. SA-110 Memory System

Instruction and cache
fetch requests

Data for data access
instructions

StrongARM core

Bus interface unit

Data memory systemInstruction memory
system

Instruction fetch
requests

Instructions
Data
requests

Instructions
and cache
lines

Read and write
requests

Data

Data to/from external memoryExternal memory requests
22 Application Note

SA-110 Microprocessor Instruction Timing
3.2 Clocking

3.2.1 Clocking Domains

The SA-110 contains two clocking domains. The DCLK domain includes the StrongARM core, the
internal instruction memory system, and all of the data memory system except for the output stages
of the write buffer. The output stages of the write buffer, the BIU, and the external interfaces are
clocked at MCLK. CCLK is defined as the output of the internal phase lock loop (PLL), the
frequency dependent on both the reference oscillator and state of the CCCFG[3:0] pins. The DCLK
domain is clocked by CCLK or MCLK depending on the switching logic state.

3.2.2 Phase of Generated MCLKs

If the processor is configured to generate a synchronous MCLK, then MCLK rising edges will
always correspond to CCLK rising edges.

3.2.3 Clock Switching

The data sheet explains that the clock source for the DCLK domain switches between the internal,
fast, CCLK, and the slower MCLK. When switching the

 DCLK source from CCLK to MCLK, the processor extends the DCLK low stage of the cycle to
the next rising edge of MCLK after the first MCLK falling edge. Figure 2 and Figure 3 show two
examples of this.

Figure 2. Switching the DCLK Source to MCLK (Example 1)

DCLK

MCLK

CCLK
Application Note 23

SA-110 Microprocessor Instruction Timing
Switching from sourcing DCLK from MCLK to sourcing from CCLK takes between 1.5 and
2.5 CCLK cycles. The switch always happens in the DCLK low phase. The phase will start with
the MCLK falling edge. It will end on the CCLK rising edge following 2 CCLK falling edges
during the phase, in addition to any CCLK falling edge that happens simultaneously with the
MCLK falling edge. The minimum time required between the MCLK falling edge and the first
CCLK falling edge (when working with asynchronous clocks) is not defined, but will be less than
half a CCLK cycle. Figure 4 and Figure 5 show two examples of this.

Figure 3. Switching the DCLK Source to MCLK (Example 2)

DCLK

MCLK

CCLK

Figure 4. Switching the DCLK Source to CCLK (Example 1)

DCLK

MCLK

CCLK
24 Application Note

SA-110 Microprocessor Instruction Timing
3.2.4 Bus Stalls

If nWAIT is low on any MCLK rising edge, then nothing within the processor clocked off MCLK
will be clocked until the next MCLK rising edge. In particular, if DCLK is being sourced from
MCLK, the entire processor will do nothing for that cycle. If, however, DCLK is being sourced
from CCLK, or is in the process of switching to being sourced from CCLK, then the DCLK
clocking domain will continue to run as normal.

Figure 5. Switching the DCLK Source CCLK (Example 2)

DCLK

MCLK

CCLK
Application Note 25

SA-110 Microprocessor Instruction Timing
3.3 Instruction Memory System Timing

3.3.1 External Read Timing

The timing of any single word read requested by the instruction memory system is identical.
Table 19 shows the timing of such a read assuming that there are no other outstanding requests. If
there are other requests in progress, or a higher priority request reaches the BIU simultaneously
with this request, then extra cycles will be inserted between cycles 2 and 3 until the BIU can accept
the request.

Bus stalls will extend DCLK cycles as described in Section 3.2.4.

3.3.2 Cache and TLB Hits

A request for an instruction that hits the cache and TLB takes one cycle. The instruction is
available to the core’s decode stage in the cycle following the cycle in which the request for the
instruction is made by the core’s fetch stage.

3.3.3 TLB Misses

If a request for an instruction misses the TLB, then the instruction memory system reads the
appropriate first-level page table entry from external memory. If this is a pointer to a second-level
page table, then it reads the appropriate second-level page table. If the page table entries are valid,
then it will write the new TLB entry to the TLB on the final cycle of the first or second read. If no
stalls occur, this will be the 5th or 10th cycle. On the following cycle, if the fetch stage of the
pipeline is still requesting the same instruction, the instruction memory system will restart the
request for the instruction. This will now hit the TLB, and may or may not hit the cache.

If an instruction fetch misses both the TLB and the cache, then the instruction memory system will
handle the TLB miss first (it does not know how to resolve the cache miss until it has a TLB entry
for the instruction).

If the page table entries are not valid, then an abort is generated on the final cycle, (i.e., for a
first-level page table), this is the only cycle, and for a second-level page table, this is the second cycle.

Table 19. Single Word Reads by the Instruction Memory System

DCLK Cycle Action

1 Instruction memory system discovers the need for a single word read (page table entry read or
instruction fetch).

2 DCLK high

2 DCLK low Request sent to BIU. DCLK source switches to MCLK (if not already MCLK).

3 DCLK high BIU receives request; if APE is high, the BIU writes the signals with address timing (A, MAS,
nRW, CLF).

3 DCLK low BIU sets SEQ and clears nMREQ; if APE is low, the BIU writes the signals with address timing.

4 DCLK high

4 DCLK low BUI clears SEQ and sets nMREQ.

5 DCLK high Requester told result of read (success or abort).

5 DCLK low Data read from D pins and available to requester. If no data side reads are outstanding, and
clock switching is enabled, DCLK source switches to CCLK.
26 Application Note

SA-110 Microprocessor Instruction Timing
3.3.4 Cache Misses, Uncacheable Instructions

If an instruction fetch misses the cache, and the instruction is not cacheable (or Icache is disabled),
then the instruction memory system reads it from external memory. It will be available to the decode
stage on the cycle following the completion of the read. If no pipeline stalls occur due to the external
read, this will be the 5th cycle following the request, thus placing 4 bubbles in the execution pipeline.

3.3.5 Cache Misses, Cacheable Instructions

If a cacheable instruction fetch misses the cache, then the instruction memory system reads the
appropriate cache line. Once this has completed, if the fetch stage is still requesting the same
instruction, the instruction memory will restart the request for the instruction. This will normally
succeed in a single cycle, but may fail if an instruction in the execution pipeline has modified
something that affects protection during the cache line fill. It is also possible for an instruction in the
pipeline to have flushed the TLB during the fill, in which case a new page table read will be needed.

Table 20 shows the timing of a cache line fill. If there are other requests in progress, or a higher
priority request reaches the BIU simultaneously with this request, then extra cycles will be inserted
between cycles 2 and 3 until the BIU can accept the request.

3.3.6 Instruction Side Coprocessor Access Timing

All instruction side coprocessor accesses happen in the cycle following that in which the MCR
instruction enters the buffer stage. All are single-cycle accesses. If a cache or TLB flush happens on
the same cycle as a cache or TLB fill completing, then the entry that has just been read is invalidated.

Table 20. Cache Line Fill by the Instruction Memory System

DCLK Cycle Action

1 Cacheable instruction fetch misses cache.

2 DCLK high

2 DCLK low Request sent to BIU. DCLK source switches to MCLK (if not already MCLK).

3 DCLK high BIU receives request; if APE is high, the BIU writes the signals with address timing (A, MAS,
nRW, CLF).

3 DCLK low BIU sets SEQ and clears nMREQ; if APE is low, the BIU writes the signals with address timing.

4 DCLK high

4 DCLK low

5 DCLK high Address on bus changed to second word if APE high.

5 DCLK low First word read from D pins and placed in cache. Address on bus changed to second word if
APE low.

6 DCLK high Address on bus changed to second word if APE high.

6 DCLK low Second word read from D pins and placed in cache. Address on bus changed to third word if
APE low.

… …

11 DCLK low BUI clears SEQ and sets nMREQ. Seventh word read from D pins and placed in cache.
Address on bus changed to eighth word if APE low.

12 DCLK high

12 DCLK low Eighth word of cache line read and placed in cache. Cache line marked valid. If no further
reads are outstanding, and clock switching is enabled, DCLK source switches to CCLK.

13 DCLK high Instruction fetch retried.

13 DCLK low Instruction fetch hits cache.

14 DCLK high Instruction decode starts.
Application Note 27

SA-110 Microprocessor Instruction Timing
3.4 Data Memory System Timing

3.4.1 External Read Timing

The timing of any single word read (or partial word read) requested by the data memory system is
identical. Table 21 shows the timing of such a read assuming that there are no other outstanding
requests. If there are other requests in progress, or a higher priority request reaches the BIU
simultaneously with this request, then extra cycles will be inserted between cycles 3 and 4 until the
BIU can accept the request.

Bus stalls will extend DCLK cycles as described in Section 3.2.4.

3.4.2 Cache and TLB Hits

A read or write that hits the cache and TLB takes one cycle.

3.4.3 TLB Misses

If a read or write misses the TLB, then the data memory system reads the appropriate first-level
page table from external memory. If this is a pointer to a second-level page table, then it reads the
appropriate second-level page table. If the page table entries are valid, the data memory system will
write the new TLB entry to the TLB on final cycle of the first or second read. If no stalls occur, this
will be the 5th or 10th cycle. On the following cycle, the data memory system will restart the read
or write. This will now hit the TLB, and may or may not hit the cache.

If a read misses both the TLB and the cache, then the TLB miss will be handled first (it does not
know how to resolve the cache miss until it has a TLB entry for the data).

If the page table entries are not valid, then the translation fault will be signalled on the final cycle of
the read of the page table entry.

3.4.4 Cache Misses, Uncacheable Data Reads

If a data read misses the cache and the data is not cacheable (or the Dcache is disabled), then it will
be read from external memory. The instruction (or instruction component for load multiples and
swaps) requesting the data will enter the writeback stage, and the data will be available through the
bypasses on the cycle following the completion of the read.

Table 21. Single Word Reads by the Data Memory System

DCLK Cycle Action

1 Data memory system discovers need for a single word read (page table entry read or data read).

2 DCLK high

2 DCLK low

3 DCLK high

3 DCLK low Request sent to BIU. DCLK source switches to MCLK (if not already MCLK).

4 DCLK high BIU receives request; if APE is high, BIU writes signals with address timing (A, MAS, nRW, CLF).

4 DCLK low BIU sets SEQ and clears nMREQ; if APE is low, the BIU writes the signals with address timing.

5 DCLK high

5 DCLK low BUI clears SEQ and sets nMREQ.

6 DCLK high Requester told result of read (success or abort).

6 DCLK low Data read from D pins and available to requester. If no data side reads are outstanding, and
clock switching is enabled, DCLK source switches to CCLK.
28 Application Note

SA-110 Microprocessor Instruction Timing
3.4.5 Cache Misses, Cacheable Data Reads

If a cacheable read misses, then the data memory system reads the appropriate cache line. The
instruction, or instruction component requesting the read, will enter the writeback stage on the
cycle following that in which the actual data requested is read from the cache. However, no other
instruction can use the data memory system until the cache line fill completes.

 If the bus is running in enhanced mode, the actual data requested will always be in the first word
read. If the bus is running in standard mode, then the data memory system will read the cache line
in order starting from its low address. As such, cache misses to other than the first word of a cache
line will take longer to make the data available to other instructions in standard mode than in
enhanced mode. However, whichever bus mode is used, the memory system remains in use and
unavailable for further instructions, for the same number of cycles.

Table 22 shows the timing of a cache line fill if the cache line being overwritten is empty, or there
have been no writes to the cache line. If there are other requests in progress, or a higher priority
request reaches the BIU simultaneously with this request, then extra cycles will be inserted
between cycles 3 and 4 until the BIU can accept the request.

If the cache line being overwritten contains modified data, then this has to be written to the write buffer
before new data can be written to the cache. If the write buffer contains at least 3 free entries, then no
additional cycles are required for this. If both halves of the cache line are dirty, the first half of the cache
line is written to the write buffer in cycles 2 and 3, the second half cache line is written to the write buffer
in cycles 4 and 5. If only one half is dirty, then this is written to the write buffer in cycles 2 and 3.

If 3 entries are not available, extra cycles are inserted between cycles 1 and 2 until they are available.

Table 22. Cache Line Fill by the Data Memory System

DCLK Cycle Action

1 Cacheable data read misses cache.

2 DCLK high

2 DCLK low

3 DCLK high

3 DCLK low Request sent to BIU. DCLK source switches to MCLK (if not already MCLK).

4 DCLK high BIU receives request; if APE is high, the BIU writes the signals with address timing (A, MAS,
nRW, CLF).

4 DCLK low BIU sets SEQ and clears nMREQ; if APE is low, the BIU writes the signals with address timing.

5 DCLK high

5 DCLK low

6 DCLK high Address on bus changed to second word if APE high.

6 DCLK low First word read from D pins and placed in cache. Address on bus changed to second word if
APE low.

7 DCLK low Address on bus changed to second word if APE high.

7 DCLK high Second word read from D pins and placed in cache. Address on bus changed to third word if
APE low.

… …

12 DCLK low BUI clears SEQ and sets nMREQ. Seventh word read from D pins and placed in cache.
Address on bus changed to eighth word if APE low.

13 DCLK high

13 DCLK low Eighth word of cache line read and placed in cache. Cache line marked valid. If no reads or
unbuffered writes are outstanding, and clock switching is enabled, DCLK source switches to CCLK.

14 DCLK high Data memory system ready for other instructions. BIU ready for other reads or writes.
Application Note 29

SA-110 Microprocessor Instruction Timing
3.4.6 Reads Hitting the Write or Merge Buffer

If the StrongARM core requests a read of an address in the write buffer, then the data memory
system will write the entry containing this address and all entries preceding it in the write buffer
using high-priority writes. This causes the writes to happen before the data memory system reads
the requested data, or any other data, from the bus. See Section 3.5.2.

If a read is requested of an address in the merge buffer, then the merge buffer is flushed into the
write buffer, and all entries in the write buffer will be written using high-priority writes. If the write
buffer is full, the instruction will stall until at least one entry is available.

3.4.7 Mergeable Writes Missing the Cache

A write is mergeable with previous writes if:

• It is to the same half cache line as the contents of the merge buffer

• It is cacheable and bufferable

• Either the processor is running in enhanced bus mode, or the write is the second or subsequent
write of a store multiple

A mergeable write is written to the merge buffer, and completes in one cycle.

3.4.8 Non-Mergeable, Bufferable Writes Missing the Cache

All other bufferable writes will force the merge buffer into the write buffer (if the merge buffer is in
use), and then write to the merge buffer. This will complete in one cycle unless the write buffer is
full, in which case it will stall until there is at least one free entry in the write buffer.
30 Application Note

SA-110 Microprocessor Instruction Timing
3.4.9 Non-Bufferable Writes Missing the Cache

A non-bufferable write will stall until there is at least one free entry in the write buffer. It will then
write its data to the write buffer and stall again until the external write of this data has been
completed. Table 23 shows the timing of a non-bufferable write missing the cache if, at the start of
the write, the write buffer is empty and no other reads or writes are in progress. The write will skip
cycle 4 if, at the start of cycle 3, DCLK is sourced from CCLK, and the relative phases of CCLK
and MCLK are such that MCLK drops at the start of, or during, the DCLK high phase of cycle 3.
The reason for this is that the timing of cycles 3 and 4 is controlled by the following requirements:

• There must be two falling MCLK edges between data being written to the write buffer and it
being passed to the BIU (between the rising edges of DCLK cycles 3 and 5).

• Clock switching requires that there must be one falling MCLK edge between the start and end
of the DCLK low phase of cycle 3.

As such, cycle 4 is required as long as there is no rising MCLK edge during DCLK high phase of
cycle 3.

The effect of this is that the time from when the data enters the write buffer to when it enters the
BIU is always greater than 1.5 and no more than 2.5 MCLK cycles.

If the write and merge buffers are full, the write stalls after cycle 1 until the merge buffer is free. If
the write buffer is full, it stalls after cycle 2 until there is a free entry. If there are other entries in the
write buffer, or there is some other I/O in progress, it stalls after cycle 4 until all previous entries in
the write buffer have been written and the BIU is available.

Table 23. Non-Bufferable Write Timing

DCLK Cycle Action

1 Write misses cache.

2 DCLK high Data written to merge buffer.

2 DCLK low

3 DCLK high Data transferred to write buffer.

3 DCLK low DCLK source switches to MCLK (if not already MCLK). Request sent to BIU.

4 DCLK high

4 DCLK low

5 DCLK high BIU receives request; if APE is high, the BIU writes the signals with address timing (A, MAS,
nRW, CLF).

5 DCLK low BIU sets SEQ and clears nMREQ; if APE is low, the BIU writes the signals with address timing.

6 DCLK high

6 DCLK low BUI clears SEQ and sets nMREQ. Sets D pins.

7 DCLK high Buffer stage told result of write (success or abort). BIU ready to start next read or write.

7 DCLK low D pins continue to be driven for hold time.

8 DCLK high Buffer stage of pipe ready for next instruction.

8 DCLK low

9 DCLK high

9 DCLK low DCLK source switches to CCLK if no other reads are in progress, and clock switching is enabled.
Application Note 31

SA-110 Microprocessor Instruction Timing
3.4.10 Swaps Missing the Cache

The read stage of a swap will flush the merge buffer into the write buffer and cause all outstanding
writes in the write buffer to be treated as high-priority write requests.

3.4.11 Data Side Coprocessor Access Timing

3.4.11.1 System Coprocessor Register Reads

These happen when the MRC instruction is in the buffer stage, and require only a single cycle in
the buffer stage.

3.4.11.2 System Coprocessor Register Writes

A request to clean a Dcache entry stalls in the buffer stage until there are 3 free entries in the write
buffer. It then stalls for a further 4 cycles during which the Dcache entry is written to the write
buffer. If the address is not in the Dcache or the Dcache line is clean, a cast-out bubble is
introduced, resulting in a single stall cycle.

A request to drain the write buffer pushes the merge buffer into the write buffer, and then stalls
until the write buffer is empty.

All other writes to the system coprocessor happen either when the MCR instruction is in the buffer
stage or early in the following cycle. These writes do not stall the buffer stage.

3.4.12 Write Buffer Timing

A request to write a new write buffer entry will first be passed to the BIU on an MCLK rising edge
following the second MCLK falling edge after the entry is placed in the write buffer. This applies
equally to buffered and "unbuffered" writes.
32 Application Note

SA-110 Microprocessor Instruction Timing
3.5 The Bus Interface Unit

3.5.1 Bus Accesses and Cycles

A bus access consists of one idle cycle followed by 1,2,3,4, or 8 sequential cycles. The types of
requests for bus accesses made to the BIU are:

• A single word (or part word) read request from either the data or the instruction memory
system. This will result in an access containing one sequential cycle.

• A cache line fill request from either the data or instruction memory system. This will result in
a bus access containing 8 sequential cycles.

• A write of a dirty cache line. This will result in a bus access containing 4 or 8 sequential
cycles. The BIU treats a cache line write as a single access even if it fills two consecutive write
buffer entries.

• Any other write. All other writes will write a single write buffer entry, and will require 1 to 4
sequential cycles.

Note: On reads, the final word of data is not read until the falling edge of the idle cycle following the final
sequential cycle.

3.5.2 Bus Contention Resolution

The BIU will look for requests for new external accesses from the instruction and data memory
systems on any cycle on which it is idle. Four types of requests are possible. These are:

• Data system read requests

• Instruction system read requests

• Normal write buffer write requests

• High-priority write buffer write requests

If there are no high-priority write requests outstanding, then the BIU will accept, in order:

• Data system read requests

• Instruction system read requests

• Normal write buffer write requests

If, however, there is both a high-priority write request and a data system read request waiting, then the
high-priority write request will be performed first. High-priority write requests will only be
performed before instruction system read requests if there is also a data system read request waiting.
Application Note 33

stomer
Support, Products, and Documentation

If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	StrongARM** SA-110 Microprocessor Instruction Timi...
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 The StrongARM Core
	2.1 The StrongARM Pipeline
	2.1.1 Instruction Fetching
	2.1.2 Multicycle Operations and Pipeline Stalls
	2.1.3 Result Bypasses

	2.2 Instruction Timings
	2.2.1 Normal Instruction Processing
	2.2.2 Branch Instructions
	2.2.3 Data Processing Instructions
	2.2.4 Load Word, Load Byte, and Load Halfword Inst...
	2.2.5 Load Signed Halfword and Load Signed Byte In...
	2.2.6 Store Instructions
	2.2.7 Swap Instructions
	2.2.8 Load and Store Multiple Processing
	2.2.8.1 Simple Load and Store Multiples
	2.2.8.2 Load and Store Multiples of 0 or 1 Registe...
	2.2.8.3 User Mode Load Multiple Instructions
	2.2.8.4 User Mode Store Multiple Instructions
	2.2.9 Multiplies
	2.2.10 MSR Instructions
	2.2.11 MRS Instructions
	2.2.12 MCR Instructions
	2.2.13 MRC Instructions
	2.2.14 Instructions with the PC as a Target
	2.2.14.1 MOV pc,rx
	2.2.14.2 Restore CPSR Data Processing Instructions...
	2.2.14.3 Load and Store Multiple Instructions Writ...
	2.2.15 Reading the PC in 26-Bit Mode
	2.2.16 Hardware Exception, Interrupt, and SWI Proc...
	2.2.16.1 Undefined Instruction Exception
	2.2.16.2 Software Interrupt
	2.2.16.3 Prefetch Abort
	2.2.16.4 Data Abort
	2.2.16.5 Interrupts

	3.0 The SA-110 Memory System
	3.1 The Structure of the Memory System
	3.2 Clocking
	3.2.1 Clocking Domains
	3.2.2 Phase of Generated MCLKs
	3.2.3 Clock Switching
	3.2.4 Bus Stalls

	3.3 Instruction Memory System Timing
	3.3.1 External Read Timing
	3.3.2 Cache and TLB Hits
	3.3.3 TLB Misses
	3.3.4 Cache Misses, Uncacheable Instructions
	3.3.5 Cache Misses, Cacheable Instructions
	3.3.6 Instruction Side Coprocessor Access Timing

	3.4 Data Memory System Timing
	3.4.1 External Read Timing
	3.4.2 Cache and TLB Hits
	3.4.3 TLB Misses
	3.4.4 Cache Misses, Uncacheable Data Reads
	3.4.5 Cache Misses, Cacheable Data Reads
	3.4.6 Reads Hitting the Write or Merge Buffer
	3.4.7 Mergeable Writes Missing the Cache
	3.4.8 Non-Mergeable, Bufferable Writes Missing the...
	3.4.9 Non-Bufferable Writes Missing the Cache
	3.4.10 Swaps Missing the Cache
	3.4.11 Data Side Coprocessor Access Timing
	3.4.11.1 System Coprocessor Register Reads
	3.4.11.2 System Coprocessor Register Writes
	3.4.12 Write Buffer Timing

	3.5 The Bus Interface Unit
	3.5.1 Bus Accesses and Cycles
	3.5.2 Bus Contention Resolution

	Support, Products, and Documentation

