

Controlling

LEGO® Programmable Bricks

Technical Reference

Spirit.OCX Technical Reference

November 1998

Foreword

At LEGO, we believe that imagination is important to the world. For decades, the LEGO
construction materials have been a means for people of all ages to express creativity and make
discoveries of their own. The addition of LEGO programmable bricks brings a whole new
dimension to construction.

The LEGO programmable bricks are microcomputers, which makes it possible to add functions
or behaviour to physical creations made by LEGO pieces. The functions or behaviour are
controlled by means of programming.

LEGO has launched two types of programmable bricks: the RCX(tm) of LEGO®
MINDSTORMS(tm) Robotics Invention System(tm) and CyberMaster(tm) of LEGO Technic®
CyberMaster(tm). The programming software codes of these two products have deliberately
been designed to be easy to use -yet versatile and powerful in function. This has been important
to enable kids to use the new technology for creation of their own personally meaningful
inventions.

This technical reference guide is published to allow more creative freedom in the programming
for more experienced users. The technical reference guide documents how the programmable
bricks can be programmed by means of Visual Basic. We hope that the release of this document
will inspire even more people to develop imaginative applications of the programmable bricks.

We kindly ask you to read the License Agreement and Warranty Disclaimer below before using
this document.

We wish you good luck with development of creative applications.

LEGO - just imagine...

Spirit.OCX Technical Reference

Page 1 of 110 November 1998

 SOFTWARE DEVELOPER KIT LICENSE AGREEMENT

 AND WARRANTY DISCLAIMER

License for the Software included in the LEGO MINDSTORMS Software Developer Kit
(hereinafter referred to as the Software) from the LEGO Group.

 IMPORTANT -- READ CAREFULLY: By using the information contained in this document you
agree to be and are hereby bound by the terms of this License Agreement. If you do not
agree to the terms of this Agreement, do not use the information contained in this
document.

I. GRANT OF LICENSE:

The LEGO Group and its suppliers and licensors (hereinafter referred to as LEGO) hereby
grant you a non-exclusive, non-commercial license to use the Software subject to the
following terms:

You may: (i) use the Software only to develop applications for the LEGO
MINDSTORMS RCX and the LEGO TECHNIC CYBERMASTER;

(ii) the applications developed by means of the Software or parts
hereof shall only be used for purposes that neither directly nor
indirectly have any commercial implications;

You may not:

(i) permit other individuals to use the Software except under the
terms listed above;

(ii) modify, translate, reverse engineer, decompile, disassemble
(except to the extent that this restriction is expressly
prohibited by law) or create derivative works based upon the
Software;

(iii) resell, rent, lease, transfer, or otherwise transfer rights to
the Software; or

(v) remove any proprietary notices or labels on the Software.

II. ENHANCEMENTS OR UP-DATES:

This license does not grant you any right to any enhancement or up-date.

III. TITLE:

Title, ownership, rights, and intellectual property rights in and to the Software shall
remain with the LEGO Group. The Software is protected by national copyright laws and
international copyright treaties. The communication protocol is protected by a pending
patent application.

Title, ownership rights and intellectual property rights in and to the content accessed
through the Software including any content contained in the Software media demonstration
files is the property of the applicable content owner and may be protected by applicable
copyright or other law. This license gives you no rights to such content.

LEGO, the LEGO logo, the LEGO Brick and LEGO MINDSTORMS are some of the trademarks
belonging exclusively to the LEGO Group.

If you want to learn more about how to use trademarks and other proprietary rights
belonging to the LEGO Group please visit our web site: http://www.lego.com.

“Visual Basic” is the trademark of Microsoft Corporation. “Delphi” and “C++ Builder” are
the trademarks of Borland Corporation. All other trademarks are the property of their
respective owners.

Spirit.OCX Technical Reference

November 1998 Page 2 of 110

IV. DISCLAIMER OF WARRANTY:

THE SOFTWARE IS PROVIDED FOR FREE WITHOUT ANY KIND OF MAINTAINANCE OR SUPPORT.

THE SOFTWARE IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, THE LEGO GROUP FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF
THE SOFTWARE OR APPLICATIONS DEVELOPED BY MEANS OF THE SOFTWARE REMAINS WITH YOU. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE LEGO GROUP OR ITS
SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL,
PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN
IF THE LEGO GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

V. TERMINATION:

This license shall terminate automatically if you fail to comply with the limitations
described in this Agreement. No notice shall be required from the LEGO Group to
effectuate such termination. On termination you must destroy all copies of the Software
and applications developed by means of the Software.

VI. GOVERNING LAW:

This License Agreement shall be governed by the laws of the jurisdiction, where you have
permanent residency. However, if the product is bought in USA the License Agreement shall
be governed by the laws of the State of Connecticut, without regard to conflicts of law
provisions, and if the product in bought in USA you consent to the exclusive jurisdiction
of the state and federal courts sitting in the State of Connecticut. This License
Agreement will not be governed by the United Nations Convention of Contracts for the
International Sale of Goods, the application of which is hereby expressly excluded.

VII. ENTIRE AGREEMENT:

This Agreement constitutes the complete and exclusive agreement between the LEGO Group
and you with respect to the subject matter hereof and supersedes all prior oral or
written understandings, communications or agreements not specifically incorporated
herein. This Agreement may not be modified except in writing duly signed by an
authorised representative of the LEGO Group and you.

Spirit.OCX Technical Reference

Page 3 of 110 November 1998

 Introduction
This Technical Reference document tells you how to use SPIRIT.OCX directly to write LEGO MINDSTORMS RCX
or LEGO Technic CyberMaster programs, providing more detailed control over the LEGO Programmable Bricks
(abbreviated PBrick).

All examples in this document are written as Microsoft Visual Basic programs (version 5.0 – abbreviated VB) but other
environments such as Borland Delphi/C++ Builder have been used successfully.

For program specific issues, the reader is referred to the respective manuals or online help systems. This document is
not intended as a general introduction to programming in VB or other systems. The reader is assumed to be familiar
with the different programming environments.

Pre-requisites
The SPIRIT.OCX ActiveX control must have been installed on the PC previously. This happens automatically when
installing the LEGO MindStorms Robotics Invention System CD-ROM (1.0 or later – abbreviated RIS) or the LEGO
Technic CyberMaster CD-ROM, so no further details will be given here.

Installing SPIRIT.OCX in VB
In the Components tab, tick “LEGO PBrickControl, OLE Control module” and drag an instance onto your main form. It
appears as a LEGO logo and it looks really nice if you make it rectangular (495 x 495 VB units works quite well and is
not too big). If it does not appear there, use the Add components feature and use the browser to find it.

Property settings
By selecting the object, you can set a number of useful properties for SPIRIT.OCX – in particular you can give it the
name “PBrickCtrl”, which is useful if you want to use the examples in this document verbatim.

We have tried to make all names used in the examples be like the ones automatically generated by VB.

Name property
Allows you to change the name by which to refer to the control in the programs. We have used the name ‘PBrickCtrl’
throughout this document, but you may use any other name that you like, such as ‘PB’ if you don’t like typing.

PBrick property
Allows you to specify what kind of LEGO programmable brick you’re writing programs for. This property is used when
checking the arguments of the methods in SPIRIT.OCX.

You can choose between “0 – Spirit” (for CyberMaster) and “1 – RCX”.

LinkType property
Allows you to specify the transmission type used to be either “0 – InfraRed”, “1 – Cable” or “2 – Radio”. This property
tells SPIRIT.OCX how to format the data sent to the LEGO programmable brick and how to check the transceiver
tower connected to the serial port of the PC.

Currently RCX uses “0 – InfraRed” and CyberMaster uses “2 – Radio” exclusively, so make sure you change both
properties (PBrick and LinkType), when you change one of them. Obviously you must make sure that the hardware
matches your settings.

ComPortNo property
Allows you to set the serial communications port that the PC uses to talk to the transceiver tower. The valid range is
heavily PC hardware dependent, but usually include COM1 to COM4.

Be very careful, when changing this and look out for conflicts with modems, serial mouse devices, PDA hot-sync bays
and other serial devices. You can use the LEGO MindStorms RIS Troubleshooting utility if this causes you any
problems.

Spirit.OCX Technical Reference

November 1998 Page 4 of 110

Program structure
A program consists of a number of tasks and subroutines executing in parallel (in a multitasking environment) and
exchanging information via a set of common variables.

The downloaded programs are executed by an interpreter that carries out the instructions from the tasks that have been
started and are ready to execute (not waiting).

The tasks are visited in a round robin fashion, so individual (byte code) instructions (commands) are executed
atomically but the interleaving of tasks happens on a command-by-command basis.

The number of programs, tasks and subroutines vary between the RCX and CyberMaster. For further information see
the parameter table on pg. TOBELINKED for details.

Tasks
The main structuring mechanism in RCX/CyberMaster programs are tasks which execute concurrently.

Starting a program by pressing the Run button on the RCX (Right button on CyberMaster) starts Task 0, which must
then start all other tasks as required, possibly after setting up and initialising the system (setting input sensor types and
modes, and setting outputs/motors to a known state).

Subroutines
To save program space, one can delegate common code to subroutines that can be called from the tasks.

Subroutines have no parameter and are shared between tasks. Several tasks can safely call the same subroutine at the
same time.

Variables
Variables in the RCX are more like general registers in a (RISC) microprocessor, in that they are addressed individually
and they cannot be combined to form contiguous chunks of memory.

There are 32 variables (numbered 0-31) and they are shared between all tasks and subroutines. It is possible to
implement a semaphore mechanism (using one global variable and exploiting the instruction set) to provide exclusive
access to shared resources.

Example
The following example shows a small application that sets up the communication and presents a few buttons for
querying the PBrick, setting a few properties and finally downloading a small program.The main form for the
application looks like:

Spirit.OCX Technical Reference

Page 5 of 110 November 1998

and the project includes a few header files (listed as appendices).

The program code for the form follows below:

Form1(code):

Private Sub AliveCheck_Click()
 If PBrickCtrl.PBAliveOrNot Then
 alive.Caption = "true"
 Else
 alive.Caption = "false"
 End If
End Sub

Private Sub DownPrgm_Click()
PBrickCtrl.SelectPrgm MotorControlProg
 PBrickCtrl.BeginOfTask MotorOnOffTask
 PBrickCtrl.Wait CON, 50
 PBrickCtrl.SetPower "motor0motor2", CON, kFullSpeed
 PBrickCtrl.SetFwd "motor0motor2"
 PBrickCtrl.On "motor0motor2"
 PBrickCtrl.Wait CON, 200
 PBrickCtrl.SetRwd "motor0motor2"
 PBrickCtrl.Wait CON, 200
 PBrickCtrl.Off "motor0motor2"
 PBrickCtrl.PlaySystemSound SWEEP_FAST_SOUND
 PBrickCtrl.EndOfTask
End Sub

Private Sub ShortIR_Click()
 PBrickCtrl.PBTxPower 0
End Sub

Private Sub Version_Click()
 FWver.Caption = PBrickCtrl.UnlockPBrick
End Sub

Private Sub LongIR_Click()
 PBrickCtrl.PBTxPower 1
End Sub

Private Sub UnlockFirmware_Click()
 PBrickCtrl.UnlockFirmware "Do you byte, when I knock?"
End Sub

Private Sub DownloadFirmware_Click()
 PBrickCtrl.DownloadFirmware "firm0309.lgo"
End Sub

Private Sub Form_Load()
 PBrickCtrl.InitComm
End Sub

Simple motor on wait off test program

Wait 0.5 sec.

Drive forward for 2 sec.

Wait 2 sec.
Change direction and drive 2 sec.
Wait 2 sec.

Play buildin sound

Initialise communication on start-up just in case. One
could also use an extra command button for this.

Spirit.OCX Technical Reference

November 1998 Page 6 of 110

Private Sub PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer, ByVal DownloadNo As Integer)
 If ErrorCode = 0 Then
 D_stat.Caption = "Success"
 PBrickCtrl.PlaySystemSound SWEEP_DOWN_SOUND
 Else
 D_stat.Caption = "error: " + Chr(48 + ErrorCode)
 End If
End Sub

Private Sub PBrickCtrl_downloadStatus(ByVal timeInPBrickCtrl As Long,
 ByVal sizeInBytes As Long,
 ByVal taskNo As Integer)
 D_time.Caption = timeInPBrickCtrl
 D_size.Caption = sizeInBytes
 D_Nr.Caption = taskNo
End Sub

The form elements (labels, text boxes etc.) are not listed explicitly, but their names should be obvious from the code and
intended functionality.

 Good practice
Because all the SPIRIT.OCX methods use (constant) numbers to control the behaviour, we have found it useful to
define most of these numbers (global constants) in a separate include file, and then have a separate include file for each
project with specific settings.

The global constants make the programs more readable in general and the project specific constant definitions make the
program understandable in terms of the problem it tries to solve (the robot it tries to control).

Spirit.OCX Technical Reference

Page 7 of 110 November 1998

 Table of Contents

License Agreement
And Warranty Disclaimer 1

Introduction 3
Pre-requisites 3
Installing SPIRIT.OCX in VB 3
Property settings 3
Program structure 4

Example 4
Good practice 6

Commands (ActiveX Control)
 Command overview

OCX Overview 8
 - Event Dispatch Interface 8
 Properties 101
 ParameterTable (#1, #2) 9 - 10
 Description of the commands 11 - 95
 Description of OLE Events 96

General Functionality
 Tasks 100
 Immediate Control 100
 Events 100
 Inputs 100
 Outputs 100
 Timers 101
 Variables 101
 Properties 101

Appendix A:
- Download error handling 102

Appendix B:
- Error codes & messages: 104

Appendix C:
- RCXdata.bas 106

 Appendix D:
- GetStarted.bas 108

Spirit.OCX Technical Reference

November 1998 Page 8 of 110

 OCX Overview

Communication control commands:
+ O Bool InitComm() 11
+ O Bool CloseComm() 8
+ O Variant GetShortTermRetransStatistics() 13
+ O Variant GetLongTermRetransmitStatistics() 8
+ O Bool SetRetransmitRetries(immidiateRetries,

downloadRetries) 17
+ O Bool IgnDLerrUntilGoodAnswer() 23

Firmware control commands:
+ BSTR UnlockPBrick() 24
+ BSTR UnlockFirmware(UnlockString) 25
+ R Bool DownloadFirmware(FileName) 22

Diagnostics commands:
+ Bool PBAliveOrNot() 32
+ O Bool TowerAndCableConnected() 35
+ O Bool TowerAlive() 36

PBrick system commands:
+. R Bool SelectDisplay(Source, Number) 26
+. R Bool SetWatch(Hours, Min) 27
+ Bool PBPowerDownTime(Time) 30
+. Bool PBTurnOff() 33
+. R Bool PBTxPower(Number) 34
+. Bool PlayTone(Frequency, Time) 66
+. Bool PlaySystemSound(Number) 67
+. Bool ClearTimer(Number) 72
. R Bool SendPBMessage(Source, Number) 94
. R Bool ClearPBMessage() 95

PBrick output control commands:
+. Bool On(MotorList) 55
+. Bool Off(MotorList) 56
+. Bool Float(MotorList) 57
+. Bool SetFwd(MotorList) 58
+. Bool SetRwd(MotorList) 59
+. Bool AlterDir(MotorList) 60
+. Bool SetPower(MotorList, Source, Number) 61
. Bool Wait(Source, Number) 81
+. C Bool Drive(Number0, Number1) 62
. C Bool OnWait(MotorList, Number, Time) 63
. C Bool OnWaitDifferent(MotorList,

Number0, Number1, Number2, Time) 64
+. C Bool ClearTachoCounter(MotorList) 65

PBrick input control commands:
+. R Bool SetSensorType(Number, Type) 68
+. Bool SetSensorMode(Number, Mode, Slope) 69
+. Bool ClearSensorValue(Number) 71

PBrick program control commands:
+ R Bool SelectPrgm(Number) 47
+ Bool DeleteTask(Number) 51
+ Bool DeleteAllTasks() 52
+ Bool DeleteSub(Number) 53
+ Bool DeleteAllSubs() 54

PBrick program execution commands:
+. Bool StartTask(Number) 48
+. Bool StopTask(Number) 49
+. Bool StopAllTasks() 50
. Bool GoSub(Number) 73

PBrick flow control commands:
. Bool Loop(Source, Number) 74
. Bool EndLoop() 75
. Bool While(Src1, No1, RelOp, Src2, No2) 76
. Bool EndWhile() 77
. Bool If(Src1, No1, RelOp, Src2, No2) 78
. Bool Else() 79
. Bool EndIf() 80
+ O Bool BeginOfTask(Number) 39
+ O Short EndOfTask() 40
+ O Short EndOfTaskNoDownload() 41
+ O Bool BeginOfSub(Number) 42
+ O Short EndOfSub() 43
+ O Short EndOfSubNoDownload() 44

PBrick arithmetic/logical commands:
+. Bool SetVar(VarNo, Source, Number) 82
+. Bool SumVar(VarNo, Source, Number) 83
+. Bool SubVar(VarNr, Source, Number) 84
+. Bool DivVar(VarNr, Source, Number) 85
+. Bool MulVar(VarNr, Source, Number) 86
+. Bool SgnVar(VarNr, Source, Number) 87
+. Bool AbsVar(VarNr, Source, Number) 88
+. Bool AndVar(VarNr, Source, Number) 89
+. Bool OrVar(VarNr, Source, Number) 90

PBrick query commands:
+ O Bool SetEvent(Source, Number, Time) 37
+ O Bool ClearEvent(Source, Number) 38
+ Short Poll(Source, Number) 45
+ Short PBBattery() 31
+ Variant MemMap() 28

PBrick data acquisition commands (RCX only):
+ R Bool SetDatalog(Size) 91
+. R Bool DatalogNext(Source, Number) 92
+ R Variant UploadDatalog(From, Size) 93

ActiveX control commands:
+ O Bool SetThreadPriority(threadNo, threadClass,

 ThreadPriority) 18
+ O Void GetThreadPriority(threadNo, threadClass,

 ThreadPriority) 20

ActiveX event dispatch interface:
A VariableChange(Number, Value) 96
A DownloadDone(ErrorCode, TaskNo) 97
A DownloadStatus(timeInMS,

sizeInBytes, taskNo) 98
A AsyncronBrickError(Number,

Description) 99

Nomenklature:
+ = Immediate Command.
. = Download-able Command.
R = For RCX only
C = For CyberMaster only
O = ActiveX (OCX) command, nothing

 transmitted to the PBrick
A = ActiveX asynchroneous events

Spirit.OCX Technical Reference

Page 9 of 110 November 1998

 ParameterTable #1/2

 Command Source (Number in cells below) Motor-
List

 VarNo RelOp

 Time

 Var. (0)

 Timer (1)

 Const. (2)

 Motor Status (3)

 Ran- dom No. (4)

 Tacho Counter C(5)

 Tacho Speed C(6)

 Motor Current C(7)

 Prgm- No R(8)

 Sensor- Value (9)

 Sensor Type (10)

 Sensor Mode (11)

 Sensor Raw R(12)

 Sensor Bool. R(13)

 Watch R(14)

 PB- Mes- sage R(15)

 AGC C(16)

 > 0
< 1
= 2
<> 3

 On(MotorList) Off(MotorList) Float(MotorList) SetFwd(MotorList) SetRwd(MotorList) AlterDir(MotorList) SetPower(MotorList, Source, Number)

 0-31 • 0-7 • 0-7 • • • • • • • • • • • • 0, 1, 2 • • •

 C ClearTachoCounter(MotorList) • • • • • • • • • • • • • • • • • 0, 1 • • •
 SetEvent(Source, Number, Time) ClearEvent(Source, Number)

 0 • • • • • • • • • • • • • • • • • • • 0-10.000
mS

 Poll(Source, Number) 0 - 31 0 - 3 • 0, 1, 2 • 0, 1 0, 1 2 x 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0 0 0 • • • •
 SetVar(VarNo, Source, Number) 0-31 0-3 -32768 - 32767

 0,1,2 1 - 32767 0,1 0,1 2 • 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0 0 • • 0 - 31 • •

 SumVar(VarNo, Source, Number) SubVar(VarNo, Source, Number) DivVar(VarNo, Source, Number) MulVar(VarNo, Source, Number) SgnVar(VarNo, Source, Number) AbsVar(VarNo, Source, Number) AndVar(VarNo, Source, Number)
 OrVar(VarNo, Source, Number)

 0 - 31 • -32768 -
32767

 • • • • • • • • • • • • • • • 0 - 31 • •

 Loop(Source, Number) 0 - 31 • 0 - 255 • 1 - 255 • • • • • • • • • • • • • • • •
 While(Source1, Number1, RelOp, Source2, Number2)
 If(Source1, Number1, RelOp, Source2, Number2)

 0 - 31 0 - 3 -32768 - 32767
 0, 1, 2 • 0, 1 0, 1 2 • 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0 0 • 0 • 0 - 3 •

 Wait(Source, Number) 0 - 31 • 1 - 32767
 • 1 - 32767 • • • • • • • • • • • • • • • •

 R DatalogNext(Source, Number) 0 - 31 0 - 3 • • • • • • • 0, 1, 2 • • • • 0 • • • • • •
 R SelectDisplay(Source, Number) 0 - 31 • 0 - 6 • • • • • • • • • • • • • • • • • •
 R SendPBMessage(Source, Number) 0 - 31 • 0 - 255 • • • • • • • • • • • • • • • • • •

 R: For RCX only C: For CyberMaster only

Spirit.OCX Technical Reference

November 1998 Page 10 of 110

 ParameterTable #2/2

 Command
 Number Time Freq Type

 @) Only use for Poll
of Sensor-Type
(CyberMaster)

 Mode Slope From Size Hours Min. Motorlist Immidiate-
Retries

 Download-
Retries

 0: None
1: Switch
2: Temperature
3: Reflection
4: Angle
5: ID0 Switch @ 6:
ID1 Switch @ 7:
ID2 Switch @

 0: Raw
1: Boolean
2: Trans. Counter
3: Period Counter
4: Percent
5: Celsius 6:
Fahrenheit 7:
Angle

 0: Absolute
1-31: Dynamic

 BeginOfTask(Number) DeleteTask(Number) StartTask(Number) ResumeTask(Number) StopTask(Number)

 C: 0 - 3

 R: 0 - 9

 • • • • • • • • • • • •

 BeginOfSub(Number) DeleteSub(Number)

 Gosub(Number)

 C: 0 – 3

 R: 0 - 7

 • • • • • • • • • • • •

 C Drive(Number0, Number1) -7 -> 7 • • • • • • • • • • • •
 R SetSensorType(Number, Type) ClearSensorValue(Number) SetSensorMode(Number, Mode, Slope)

 0, 1, 2 • •
 R: 0 – 4

 C: 0 - 4

 R: 0 - 7

 0 – 31 • • • • • • •

 PlayTone(Frequency, Time) PlaySystemSound(Number)
 0 – 5 1-255 [10mS]

 1-20,000 • • • • • • • • • •

 ClearTimer(Number) 0 – 3 • • • • • • • • • • • •
 PBPowerDownTime(Time) • 1 – 255 [min]

0=forever
 • • • • • • • • • • •

 R SelectPrgm(Number) 0 - 4 • • • • • • • • • • • •
 R SetWatch(Hours, Minutes) • • • • • • • • 0 - 23 0 - 59 • • •
 R SetDatalog(Size) • • • • • • • 0 ~ delete log

area

 1 - available
Memory

 • • • • •

 R UploadDatalog(From, Size) • • • • • • 0 – available
Memory

 1 - 50 • • • • •

 R PBTxPower(Number) 0 - 1 • • • • • • • • • • • •
 C OnWait(MotorList, Number, Time) -7 -> 7 0-255

[100mS !!]
 • • • • • • • • 0, 1, 2 • •

 C OnWaitDifferent(MotorList, Number0, Number1, Number2,
 Time) -7 -> 7 0-255

[100mS !!]
 • • • • • • • • 0, 1, 2 • •

 SetRetransmitRetries(immidiateRetries, downloadRetries) • 0-32767 1-32767

 R: For RCX only. C: For CyberMaster only

Spirit.OCX Technical Reference

 Page 11 of 110 November 1998

 þ CyberMaster Command
 þ RCX Command

 InitComm()

 o Downloadable Command
 þ Immediate Command

 InitComm initialises the PC-Serial communication port.

 The communication port (COM1, COM2, COM3 or COM4) can be selected via the property
ComPortNo.

 The type of transmitter link (CABLE, IR or RADIO) can be selected via the property LinkType.

 Type of PBrick (CyberMaster or RCX) can be selected via the property PBrick.

 Nothing is sent from the PC to the PBrick – it only sets up Spirit OCX.

 This command should be used as the very first one (i.e. it initialises all communication features in
Windows).

 Part: Description:

 Return value: If the initialisation succeeds, the return value is set to TRUE.
 If the initialisation fails, the return value is set to FALSE.

 Example 1: Values set via a property editor.

If PBrickCtrl.InitComm Then
Label1.Caption = “Comm-init OK”

Else

If the property ComPortNo is set to 1 this
initialises the PBrick communication to
COMM-port 1 (COM1).

Label1.Caption = “Init Comm FAILED”
EndIf

LinkType and PBrick depends on the
settings of the LinkType and PBrick
Properties.

Example 2: Values set by program code

PBrickCtrl.LinkType = 2 Radio = 2 (IR = 0 and Cable = 1)
PBrickCtrl.PBrick = 0 CyberMaster = 0 (RCX = 1)
PBrickCtrl.ComPortNo = 3 Communication port COM3 selected.
Label1.Caption = PBrickCtrl.InitComm Initialise the communication.

Spirit.OCX Technical Reference

November 1998 Page 12 of 110

 þ CyberMaster Command
 þ RCX Command

 CloseComm()

 o Downloadable Command
 þ Immediate Command

 CloseComm closes the serialport so other applications can take over the port. E.g. low level debug
tools.

 Used when the user needs additional help for setting up his/her computer-system.

 Example:

PBrickCtrl.InitComm

If PBrickCtrl.TowerAlive Then
…

Else
PBrickCtrl.CloseComm

End If

COM port initialised with the parameters set in
the properties.

Tower is alive and H/W port works OK.

Ready for debug with low-level H/W debug
code.

Spirit.OCX Technical Reference

 Page 13 of 110 November 1998

 þ CyberMaster Command
 þ RCX Command

 GetShortTermRetransStatistics()

 o Downloadable Command
 þ Immediate Command

 This command is used for checking the signal quality of the actual transmission. I.e. is the
transmission disturbed by noise (CyberMaster) or external light (RCX)? Is the PBrick out of range?
Is there an object between the sender and receiver (RCX)?

 An increasing count of retransmission and/or signal corrections (CyberMaster) can signal the user
application that there is some degrading of the signal quality. The user application can then decide
what to do:

• Ask the user to move the PBrick closer to the Transceiver Tower. Manually
(RCX/CyberMaster) or under joystick control (CyberMaster).

• If the PBrick is ‘out of range’ then a continuous retransmission will affect the communication
between the PBrick and the user application. The retransmissions will lower the rate of
information from the PBrick. Has the transmitted command(s) been received or not. The answer
is delayed until the retransmission has finished. By lowering the setting of the retransmission
rate, the application can get faster answers. To set the retransmission rate use the command
SetRetransmitRetries(ImmidiateRetries, DownloadRetries) - see page 17 for further
information. By default the retransmission rate is set to 5 and 10 (I.e. a total of 5 transmissions
for immediate commands and a total of 10 for downloaded commands).

 This command shows only information collected since last call. I.e. the info is automatically reset in
the ActiveX control after each call. For long term transmission quality (from program start) see
GetLongTerm-RetransmitStatistics on page 15.

 Part: Description:

 Return value: Variant. A two-dimensional OLE variant array. See the following page for a

description of each element.

 The returned information is positioned in the returned variant array as described on next page.

Spirit.OCX Technical Reference

November 1998 Page 14 of 110

 Element: 1st Dimension: 2nd Dimension: Description:

 1 Total count of trans-
mitted commands
since last call.

 Total count of error
corrected bytes since
last call.

 Total transmitted bytes normally 1 in noisy
environments (I.e. function called after each
command sent).
 Total error corrected bytes are showing the count
of bytes in which one or more error correction(s)
have been performed. Counted since last call.

 2 Count of OK trans-
missions.
Transmitted without
any retransmission.

 Count of answers
Error corrected
without any retrans-
mission.

 Commands without any retransmission. Succeeded
in first transmission. Counted since last call.
 Count of corrected answers without any
retransmission. Counted since last call.

 3 - 12 Count of trans-
missions succeeded
after 1- 10 retrans-
mission.

 Count of commands
error corrected and
succeeded after 1–10
retransmission.

 Count of commands with 1-10 retransmission
before success. Counted since last call.
 Count of commands succeeded when retransmitted
1-10 time and error corrected. Counted since last
call.

 Example:

Private Sub Command1_Click()
Dim Stat As Variant
Dim I As Long
Dim val1 As Integer
Dim val2 As Integer

 Stat =
PBrickCtrl.GetShortTermRetransStatistics()
 List1.Clear

The value received as a safe
array

For I = LBound(Stat, 2)To UBound(Stat, 2) Get size
Val1 = Stat(0, I)
Val2 = Stat(1, I)

Get ReTx element
Get ErrorCorrect

Count
List1.AddItem Str(val) + " : " + Str(val2)
Next I

End Sub

Display values
Repeat n times.

Spirit.OCX Technical Reference

 Page 15 of 110 November 1998

 þ CyberMaster Command
 þ RCX Command

 GetLongTermRetransmitStatistics()

 o Downloadable Command
 þ Immediate Command

 This command is used for checking the overall signal quality. The returned information is collected
from program start.

 A high count of retransmissions and/or signal corrections(CyberMaster) can be the result of an
environment with a lot of electrical noise (CyberMaster) or room with much light (RCX). The user
application can ask the user to:

• Move the PBrick away from the light (RCX). Place the transceiver tower away from the
computer/monitor or other electrical equipment.

• If the PBrick is near ‘out of range’, the user application should ask the user, to move the PBrick
closer to the Transceiver Tower.

The command shows information collected since program start. For short term transmission quality,
see GetShortTermRetransStatistics on page 13.

 Part: Description:

Return value: Variant. A two-dimensional OLE variant array. See the following page
 for a description of each element.

The returned information is positioned in the returned variant array as described on the following
page.

Spirit.OCX Technical Reference

November 1998 Page 16 of 110

Element: 1st Dimension: 2nd Dimension: Description:
1 Total count of trans-

mitted commands
since program start.

Total count of error-
corrected bytes since
program start.

Total transmitted bytes since program start.
Total error corrected bytes are showing the count of
bytes in which one or more error correction(s) have
been performed. Counted since program start.

2 Count of OK trans-
missions.
Transmitted without
any retransmission.

Count of answers
error corrected
without any retrans-
mission.

Commands without any retransmission. Succeeded in
first transmission. Counted since program start.
Count of corrected answers without any
retransmission. Counted since program start.

3 - 12 Count of trans-
missions succeeded
after 1-10 retrans-
mission.

Count of commands
error corrected and
succeeded after 1-10
retransmission.

Count of commands with 1-10 retransmission before
success. Counted since program start.
Count of commands succeeded when retransmitted
1-10 time and error corrected. Counted since program
start.

 Example:

Private Sub Command1_Click()
Dim Stat As Variant
Dim I As Long
Dim val1 As Integer
Dim val2 As Integer

 Stat =
PBrickCtrl.GetLongTermRetransmitStatistics()
 List1.Clear

The value received as a safe
array.

For I = LBound(Stat, 2) To UBound(Stat, 2) Get size
Val1 = Stat(0, I)
Val2 = Stat(1, I)

Get ReTx element
Get ErrorCorrect

count
List1.AddItem Str(val) + " : " + Str(val2)

 Next I
End Sub

Display values
Repeat n times.

Spirit.OCX Technical Reference

 Page 17 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SetRetransmitRetries(ImmidiateRetries, DownloadRetries)

o Downloadable Command
þ Immediate Command

This command is used to fine-tune the rate of retransmission. The retransmission count can differ
due to radio noise (CyberMaster), incoming light (RCX) or an out of range situation.

The command is very useful for getting an ‘out of range’ Pbrick back in contact. The return answer
from the PBrick can be set in a “don’t care” state. I.e. the application can continue to send motor
commands to the PBrick and ignore the answers without the overhead of extensive retransmissions.

 Part: Description:

 Return value: If the function succeeds, the return value is set to TRUE.
 If the function fails, the return value is set to FALSE.

ImmidiateRetries: An integer value for setting the retransmissions (total count of
transmissions) for immediate commands. Range 1(0) - 32767. Default 5.
The ImmidiateRetries can be set to zero (0) meaning the answer from the
PBrick is totally ignored. This is useful when the PBrick gets “out of sight”.

DownloadRetries: An integer for setting the retransmissions while downloading program
sequences and firmware (RCX). Range 1 to 32767. The default value is
initially set to 10.

 Example:

PBrickCtrl.SetRetransmitRetries(1, 10) Need early warning if model cannot “hear”
the commands. Normal retries when
downloading.

Spirit.OCX Technical Reference

November 1998 Page 18 of 110

þ CyberMaster Command
þ RCX Command

 SetThreadPriority(threadNo, threadClass, ThreadPriority)

o Downloadable Command
þ Immediate Command

This command is used to fine tune the performance of the user application/OCX. Both the process
priority and the thread priority in the ActiveX component can be set/changed. Normally only the
ActiveX threads should be manipulated.

The threadNo which is of the type THREADNAME is used to address the thread. ThreadClass
which is of the type PROCESSPRIORITYCLASS addresses the priority class of the process. It
should never be accessed with values other than DefaultClass = 0 (Nothing changes).
ThreadPriority is a variable of the type THREADPRIORITY and it sets the priority of the thread
addressed by threadNo.

The InitComm command should be used before this command.

 Part: Description:

 Return value: If the function succeeds, the return value is set to TRUE.
 If the function fails, the return value is set to FALSE.

threadNo Is a variable of the type THREADNAME. In the ActiveX control the
following threads are used:

CommPortThread = 0
EventThread = 1
DownloadThread = 2

Other values will be ignored.

threadClass Is a variable of the type PROCESSPRIORITYCLASS. This variable defines
the different types of priority classes for the running process. Remember all
the threads run in one single process. Changing this value for one process
will alter the priority class for all the other threads. This is because this type
of priority attaches to the process and not the thread. The default value is 3
(NORMAL_PRIORITY_CLASS). The following table shows the mapping
between the internal priority class representation (values from 0 - 4) into the
real win32 values:

Spirit.OCX Technical Reference

 Page 19 of 110 November 1998

Win32 Internal
DefaultClass = 0

 HIGH_PRIORITY_CLASS = 1
 IDLE_PRIORITY_CLASS = 2

NORMAL_PRIORITY_CLASS = 3
 REALTIME_PRIORITY_CLASS = 4

 When the Set method is called with an 0 (DefaultClass) the ActiveX control will not try to alter the priority
class for the process. This is highly recommended.

 ThreadPriority Is a variable of the type THREADPRIORITY. Defines the thread priority for the threads.
The following table shows the mapping between the internal thread priority representation (values from 0 -
6) into the real win32 values:

Win32 Internal
 THREAD_PRIORITY_ABOVE_NORMAL = 0
 THREAD_PRIORITY_BELOW_NORMAL = 1
 THREAD_PRIORITY_HIGHEST = 2
 THREAD_PRIORITY_IDLE = 3
 THREAD_PRIORITY_LOWEST = 4
 THREAD_PRIORITY_NORMAL = 5
 THREAD_PRIORITY_TIME_CRITICAL = 6

 The default values for the three threads are:

 Thread Default value

CommPortThread = 6
EventThread = 5
DownloadThread = 5

 Example:

Dim pc As Integer
Dim pr As Integer
Dim name As Integer

name = Text1.Text
pc = 0

pr = Text2.Text
If PBrickCtrl.SetThreadPriority(name, pc, pr) Then
Text3.Text = “Ok”

Else
Text3.Text = “Error in SetThreadPriority”

End If

Don’t change the priority
class for the process.

Spirit.OCX Technical Reference

November 1998 Page 20 of 110

þ CyberMaster Command
þ RCX Command

 GetThreadPriority(threadNo, threadClass, ThreadPriority)

o Downloadable Command
þ Immediate Command

This command is used to get information about the current thread priority and performance of the
user application/OCX. Both the process priority and the thread priorities in the ActiveX component
can be read by this command

The threadNo which is of the type THREADNAME is used to address the thread. The priority class
of the process is returned via the threadClass which is a pointer of the type
PROCESSPRIORITYCLASS. The priority of the thread addressed by threadNo is returned via the
ThreadPriority which is a pointer of the type THREADPRIORITY.

The InitComm command should be used before this command.

 Part: Description:

threadNo Is a variable of the type THREADNAME. In the ActiveX control the
following threads are used:

CommPortThread = 0
EventThread = 1
DownloadThread = 2

If ThreadNo is out of range, the value of ThreadClass and ThreadPriority will
be set to -1.

threadClass Returns the value of the priority class of the process.

The default value is 3 (NORMAL_PRIORITY_CLASS). The following table
shows the mapping between the internal priority class representation (values
from 0 - 4) into the real win32 values:

Win32 Internal
DefaultClass = 0
HIGH_PRIORITY_CLASS = 1
IDLE_PRIORITY_CLASS = 2
NORMAL_PRIORITY_CLASS = 3
REALTIME_PRIORITY_CLASS = 4

Spirit.OCX Technical Reference

 Page 21 of 110 November 1998

 ThreadPriority Returns the value of the thread priority addressed by the ThreadNo.

 The following table shows the mapping between the internal thread priority representation (values from 0 -
6) into the real win32 values:

Win32 Internal

 THREAD_PRIORITY_ABOVE_NORMAL = 0
 THREAD_PRIORITY_BELOW_NORMAL = 1
 THREAD_PRIORITY_HIGHEST = 2
 THREAD_PRIORITY_IDLE = 3
 THREAD_PRIORITY_LOWEST = 4
 THREAD_PRIORITY_NORMAL = 5
 THREAD_PRIORITY_TIME_CRITICAL = 6

 The default values for the three threads are:

 Thread Default value

CommPortThread = 6
 EventThread = 5

 DownloadThread = 5

 Example:

Dim pc As Integer
Dim pr As Integer
Dim name As Integer

To get information about the
CommPortThread the following VB
code could be used (there is no check
for failure).

name = 0
PBrickCtrl.GetThreadPriority(name, pc, pr)
Label1.Caption = pc
Label2.Caption = pr

CommPort

Spirit.OCX Technical Reference

November 1998 Page 22 of 110

o CyberMaster Command
þ RCX Command

 DownloadFirmware(FileName)

o Downloadable Command
þ Immediate Command

First it sets the PBrick in ‘Boot Mode (acts like a PBrick without firmware). Next this command
downloads the firmware version pointed to by ‘FileName’.

This command will delete all downloaded tasks. The download may take a few minutes!

 Part: Description:

FileName: Points to the file holding the firmware to be downloaded. The file name is a
string holding both the PATH and the FILENAME following the normal
operating system syntax.

Return value: If the start-up of the download succeeds, the return value is TRUE, otherwise
the return value is FALSE.

The DownloadStatus event (see page 98) includes information about
download size in bytes, the estimated download time, and the download type
(here the type is “100”, i.e. firmware download).

The download is done in a separate thread in the ActiveX control, so the load
on the control program should be minimal. Error(s) detected in the download
thread will be sent to the user application as an event:

The result of the firmware download will be sent in the DownloadDone event
(See page 97).

DownloadDone event message:

0: Everything OK
1: Download failed. Further information in the Asyncron-BrickError

event (see page 99). Error code and description are both sent via this
event.

 Example:

PBrickCtrl.DownloadFirmware "FIRM0309.LGO" Downloads the firmware to the PBrick,
from the disk file FIRM0309.LGO

Spirit.OCX Technical Reference

 Page 23 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 IgnDLerrUntilGoodAnswer()

o Downloadable Command
þ Immediate Command

The command sets an internal flag in the OCX. Used to flag a special transmission mode.

This command is used to recover from a transmission deadlock in a download. If the PBrick
receives a command, considers it OK and replies with the normal Acknowledge it changes state and
waits for the next block in the download.
But if the transceiver tower never receives this Acknowledge, the current transmission may come
into a Deadlock (i.e. Transceiver Tower waits for the PBrick to reply and the PBrick waits for the
next block in the download).

By issuing this command the download is set in a sort of “Error Tolerant” mode: The next program
to download will start its download from the block that failed. This means that you have to
download the same program.

Before starting the new download, the user should send a transmitted command (such as
PBAliveOrNot) via the OCX. This is to synchronise the PBrick communication. It is very important
to send a transmitted*) command before sending the new “BeginOfDownload” (Task or Sub).

*)Only real transmitted commands effects the togglebit. Host specific commands (e.g.
InitComm) do not effect the togglebit.

 PLEASE NOTE: Never send the DeleteTask command.

 Example:

PBrickCtrl.BeginOfTask 0
.....many lines of code
EndOfTask

Label1 = PBrickCtrl.PBAliveOrNot
PBrickCtrl.IgnDLerrUntilGoodAnswer
PBrickCtrl.BeginOfTask 0
....

EndOfTask

Something disturbs the transmission between the
PBrick and the Tower.
The AsyncronPBrickError returns
"TOO_MANY_RESENDS" i.e. we can not receive
an acknowledge.

New transmission started, the OCX continues until
an acknowledge is received and the download then
continues.

Spirit.OCX Technical Reference

November 1998 Page 24 of 110

þ CyberMaster Command
þ RCX Command

 UnlockPBrick()

o Downloadable Command
þ Immediate Command

This command is used for retrieving the ROM version. In the RCX PBrick the command also
returns the version of the downloadable part of the firmware.

The ROM version is hardware specific for both the RCX- and the CYBERMASTER PBrick, while
the firmware (RCX) is relating to the actual downloaded firmware in the RCX PBrick.

 Part: Description:

Return value: A Basic string representing the version of the PBrick ROM and the
downloadable firmware.
An 11 character string is returned:

RR.rr/AA.aa

Where: RR represents the version of the ROM
rr refers to the actual release of the ROM.
AA represents the version of the downloadable part of the firmware.
aa refers to the actual release of the downloadable part.

 Example (RCX):

Label1.Caption = PBrickCtrl.UnlockPBrick After the call the LABEL1 show:
03.02/03.09

ROM version 3, release 2.
The downloaded part of the System is
version 3, release 9.

Example (CYBERMASTER):

Label1.Caption = PBrickCtrl.UnlockPBrick After the call above LABEL1 shows:
01.01/00.00

ROM version 1, release 1

Spirit.OCX Technical Reference

 Page 25 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 UnlockFirmware(UnlockString)

o Downloadable Command
þ Immediate Command

This command is used to open the command interpreter in the PBrick.

RCX: The UnlockFirmware command should be issued after each new download of
the downloadable firmware (e.g. after battery change or update of software).

CyberMaster: The UnlockFirmware command should be sent after each power up. The
command also sets the powerdown time to 10 min. implicitly.

 Part: Description:

UnlockString: The 1st part of LEGO copyrighted unlock handshake string:
"Do you byte, when I knock?"

Return value: Users trying to use another UnlockString are forced to display the LEGO
logo. A DirectX application will not show the logo, but the MessageBox pops
up behind the active DirectX application and freezes the application. The user
can use a correct UnlockString to prevent the MessageBox from popping up,
but then he has to use the LEGO copyrighted text string.

 Example 1 (Correctly supplied UnlockString:)

Label1.Caption = PBrickCtrl.UnlockFirmware(“Do you byte, when I knock?”)

This example will set the label
Label1.Caption to “This is a LEGO
Control OCX communicating with a
LEGO PBrick!” if the UnlockFirmware
succeeds else the LABEL1.Caption is set
to: “Unlock failed”.

Example 2 (Invalid UnlockString supplied:)

Label1.Caption = PBrickCtrl.UnlockFirmware(“XYZ”)

This example will set the label
LABEL1.Caption to “The LEGO Control
OCX can not get a valid PBrick Unlock
string!” and the MessageBox will pop up
or block the application (DirectX).

Spirit.OCX Technical Reference

November 1998 Page 26 of 110

o CyberMaster Command
þ RCX Command

 SelectDisplay(Source, Number)

þ Downloadable Command
þ Immediate Command

This command is used to perform the same operation as pressing the ‘Select key’ on top of the RCX
PBrick.

 Part: Description:

Source Source can be either a VAR or a CONSTANT type.
Number: If Source is a VAR then the range for Number is 0-31.

If Source is a CONSTANT the range for Number is 0-6.
If the selected VAR (0-31) contains a value <0 or >6 then the SelectDisplay-
command is ignored.

Constant pointed to by Number
or value in Var (0-31):

Display shows:

 0 SoftwareWatch
 1 Input 0 (labeled 1 on the box)
 2 Input 1 (labeled 2 on the box)
 3 Input 2 (labeled 3 on the box)
 4 Output 0 (labeled A on the box)
 5 Output 1 (labeled B on the box)
 6 Output 2 (labeled C on the box)

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SelectDisplay 2, 5 The display on the PBrick will show the power setting of
output “1”. E.g. a displayed 4 equals power level 4.

Spirit.OCX Technical Reference

 Page 27 of 110 November 1998

o CyberMaster Command
þ RCX Command

 SetWatch(Hours, Min)

þ Downloadable Command
þ Immediate Command

Sets the PBrick Software Watch. The watch is a 24-hours type (i.e. 0 to 23:59).

 Part: Description:

Hours: Sets the Hour part of the PBrick’s internal software watch (0 - 23).

Min: Sets the Minute part of the PBrick’s internal software watch (0 - 59).

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetWatch 13, 22 Sets the internal software watch to 13:22.

Spirit.OCX Technical Reference

November 1998 Page 28 of 110

þ CyberMaster Command
þ RCX Command

 MemMap()

o Downloadable Command
þ Immediate Command

Returns an variant (i.e. a safe array) of memory pointers.

 Part: Description:

Return value: A complete memory map in a variant (safe array).

Array elements
 (RCX):

ErrorCode Inverted MemMap command for <OK> and 0x00
flagging a <FAIL>

Sub00, ...Sub07, Sub00 = pointer to <Program0, Sub0>
Sub10, ...Sub17,

-

Sub17 = pointer to <Program1, Sub7>

Sub40, ...Sub47, Sub47 = pointer to <Program4, Sub7>

Job00,Job09,

-

Job00 = pointer to <Program0, Job0>

Job40,Job49, Job49 = pointer to <Program4, Job9>

Log, Pointer to start of Datalog Area

CurrentLog, Most recent datalog

MemUsed, Total of mem used (incl. allocated datalog area)

MemTop Pointer to last byte in UserMemory

Array elements
 (CyberMaster):

ErrorCode Inverted MemMap command for <OK> and
0x00 flagging a <FAIL>

Sub00, ...Sub03, Sub00 = pointer to <Program0, Sub0>
Sub03 = pointer to <Program0, Sub3>

Job00,Job03, Job00 = pointer to <Program0, Job0>
Job03 = pointer to <Program0, Job3>

MemUsed, Total of mem used (incl. allocated datalog area)

MemTop Pointer to last byte in UserMemory

Spirit.OCX Technical Reference

 Page 29 of 110 November 1998

All elements are pointers represented as 16-bit signed integers (due to the OLE/safe array interface.)
The size of any element can be calculated as: (Ptr to next element) – (Ptr to this element).

ErrorCode Is a 16-bit flag showing OK or FAIL. Inverted MemMap command means an
OK MemMap returned. A “0x00” flags an error.

SubXY Points at the start address of subroutine Y in program X.

JobXY Points at the start address of task Y in program X.

Log The element points at the start of the datalog area.

CurrentLog The element points to the last element currently logged.

MemUsed This element points to the last allocated byte in the user ram. Hence, it also
points to the last byte in the datalog area.

MemTop Points to the last available byte in user ram. I.e. MemTop and User Memory
Size are identical.

 Example

MemMapListbox List of “pointers
elements” StatusLabel - Shows result of
operation (error code).

Private Sub Command1_Click()
Dim Stat As variant
Dim I As Integer
Dim MemValue As Integer

Data returned in a safe array

Stat = PBrickCtrl.MemMap
MemValue = Stat(LBound(Stat))
Label1.Caption = Str(MemValue)
List1.Clear
For I = LBound(Stat) + 1 To

UBound(Stat)

First element = ErrorCode
Show status
Clean up the listbox.

MemValue = Stat(I)
List1.AddItem Str(MemValue)

Next I
End Sub

Iterate over the elements

Spirit.OCX Technical Reference

November 1998 Page 30 of 110

þ CyberMaster Command
þ RCX Command

 PBPowerDownTime(Time)

o Downloadable Command
þ Immediate Command

Sets the PBrick’s Auto PowerdownTime. (The PBrick’s default Powerdown time is 15 minutes).

 Part: Description:

Time: 0 - 255.
The PowerdownTime is set in minutes [1 to 255].
If Time is set to “0” (zero) it means auto powerdown
is disabled (i.e. the PBrick is on forever).
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.PowerDownTime 120 The PBrick’s auto powerdown time is set to 2 hours.

Spirit.OCX Technical Reference

 Page 31 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 PBBattery()

o Downloadable Command
þ Immediate Command

PBrick Battery check. The function returns the voltage of the PBrick battery. The value is an
average sampled over the last 30 seconds. I.e. a start-up of a motor will not affect the value.

 Part: Description:

Return value: Voltage returned in a signed integer (short). If the function succeeds, the
return value is the battery voltage in mV. Otherwise a zero (0) is returned. If
the PBrick is not accessible (e.g. Turned off) an error will be issued. The
user application should have an error handler, e.g. Visual Basic On Error
Goto <lblMyErrorHandler>.

 Example:

Label1.Caption = PBrickCtrl.PBBattery() Sets label ”Label1” to the voltage level of
the PBrick’s batteries [millivolts].

Spirit.OCX Technical Reference

November 1998 Page 32 of 110

þ CyberMaster Command
þ RCX Command

 PBAliveOrNot()

o Downloadable Command
þ Immediate Command

Use this command as a quick way to determine whether the PBrick is able to answer or not (The
whole set-up, SW, Cable, transceiver tower, and PBrick is tested).

 Part: Description:

Return value: Boolean. If the PBrick is alive and within range, the return value is set to
TRUE.
If no answer is received from the PBrick within the timeout period, the return
value is set to FALSE.

 Example:

If PBrickCtrl.PBAliveOrNot Then
Label1.Caption = “OK communication”

Else
Label1.Caption = “Unable to communicate with the PBrick”

EndIf

Spirit.OCX Technical Reference

 Page 33 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 PBTurnOff()

þ Downloadable Command
þ Immediate Command

The PBrick stops all running jobs, and turns itself off.

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

If PBrickCtrl.PBTurnOff Then
Label1.Caption = “PBrick Turned OFF”

Else
Label1.Caption = “PBrick Status UnKnown”

EndIf

If the PBrick is turned off correctly the
returned value is TRUE.

Spirit.OCX Technical Reference

November 1998 Page 34 of 110

o CyberMaster Command
þ RCX Command

 PBTxPower(Number)

þ Downloadable Command
þ Immediate Command

Set the IR transmitter power of the RCX PBrick. If more than one RCX is used in the same room,
the TxPower should be set to Low, to prevent the RCXs from interfering with each other. (The
transmitter power of the transceiver tower has to be set manually with the switch on the front of the
tower).

 Part: Description:

Number: 0: Short range mode
1: Long range mode.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

If (PBrickCtrl.PBTxPower 1) Then The PBrick is forced into LONG
range tx.

Label1.Caption = “PBrick setup for LONG range”
Else
Label1.Caption = “PBrick Status UnKnown”

EndIf

Spirit.OCX Technical Reference

 Page 35 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 TowerAndCableConnected()

o Downloadable Command
þ Immediate Command

Used to detect a correctly connected cable and transceiver tower. The command uses the “Request
To Send” (RTS) and the “Clear To Send” (CTS) signal to check for the hardware connection.

The command toggles the RTS line and the signal is shortcircuited to the CTS line by a jumper in
the transceiver tower. The function detects the transition of the CTS line, so a cabling failure should
not give a wrong signal (except a shortcircuited RTS/CTS).

 Part: Description:

Return value: If the cabling is OK, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

If PBrickCtrl.TowerAndCableConnected Then
 Label1.Caption = “Hardware cabling OK”
Else
 Label1.Caption = “Hardware FAIL! Please control the cabling.”
End If

Spirit.OCX Technical Reference

November 1998 Page 36 of 110

o CyberMaster Command
þ RCX Command

 TowerAlive()

o Downloadable Command
þ Immediate Command

Used to check the status of the transceiver tower. Is the hardware and battery OK? Due to the fact
that the infrared Receiver can “see” the transmitted signal, the input buffer of the serial channel will
contain a copy of the transmitted bytes. This optical feedback can be used as an alive check of the
Tower. The test is also a simple check of the battery in the TxTower.

This command always first checks the total transmission by sending an implicit PBAliveOrNot. If
the PBAliveOrNot command returns FALSE, a special transmission string is sent to the transceiver
tower. The crosstalk in the transceiver tower is used for this test. If this test fails the string is only
sent twice, not with the RetransmitRetries setting.

IMPORTANT: Should always be used after a TowerAndCableConnected command. A short-
circuited cable and/or crosstalk in the hardware could affect the result (i.e. give a TRUE without
any tower connect).

 Part: Description:

Return value: If Tower is alive (i.e. battery and hardware OK), the return value is
 TRUE.

If the function fails, the return value is FALSE.

 Example:

If PBrickCtrl.TowerAlive Then
 Label1.Caption = “Tower hardware and battery OK”
Else
 Label1.Caption = “Tower H/W-FAIL or Tower battery should be changed!”
End If

Spirit.OCX Technical Reference

 Page 37 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SetEvent(Source, Number, Time)

o Downloadable Command
þ Immediate Command

Sets and enables the autopolling feature. When enabled the OLE control automatically polls
Variable 0 (zero) of the PBrick with the time interval set by the value of Time. If a change of
Variable 0 (zero) is detected, the ActiveX control automatically sends an OLE event to the
application.

Hence, the impact on the user application is minimal.

All internals in the PBrick can be scanned. The downloaded program should include a small routine
which sends or refreshes the required data into Variable 0.

 Part: Description:

Source, Source and Number addresses what to autopoll for.
Number: See ParameterTable for ranges, page 9.

(Currently only implemented for Variable 0)

Time: Sets the time interval for the autopoll (in ms.).

Return value: If the function succeeds (i.e. the set-up of the event in the ActiveX control),
the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetEvent(Var, 0, 300) Set up autopolling on variable 0, with a time
interval of 300ms.

If any changes in variable occur, the OLE event VariableChange will be sent to the application,
reflecting the new value for Variable 0. (See page 96)

Spirit.OCX Technical Reference

November 1998 Page 38 of 110

þ CyberMaster Command
þ RCX Command

 ClearEvent(Source, Number)

o Downloadable Command
þ Immediate Command

Clears an event set up by SetEvent (see page 37).

 Part: Description:

Source, Source and Number point out what to disable autopoll for.
Number: See ParameterTable for ranges, page 9.

(Currently only implemented for Variable 0).

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

Spirit.OCX Technical Reference

 Page 39 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 BeginOfTask(Number)

o Downloadable Command
þ Immediate Command

Initialises a task download sequence. All commands following this, and until the EndOfTask or
EndOfTaskNoDownload commands will be buffered in the ActiveX control. The actual compilation
and download of the code to the PBrick will start when the EndOfTask or EndOfTaskNoDownload
command is received.

When the download is finished, the ActiveX control will send the ‘DownloadDone’ event with
information about the result of the download. See page 97 for more information about the
DownloadDone event.

 Part: Description:

Return value: If start-up of buffering commands is started OK, the return value is
TRUE.
If the function fails, the return value is FALSE.

 Example This example downloads a program to task 1:

PBrickCtrl.BeginOfTask 1 Initialises download to task 1
PBrickCtrl.On “01” Starts motor 0&1
PBrickCtrl.Wait 100 Stops program execution for 1 sec.
PBrickCtrl.Off “01” Stops motor 0&1

PBrickCtrl.EndOfTask Ends the download sequence.

When the EndOfTask command is reached, the program buffered in the ActiveX control is
compiled, syntax checked and transferred to the PBrick via the transceiver tower.

Estimated download time and compiled size of the task will be sent in the DownloadStatus event,
see page 98.

Spirit.OCX Technical Reference

November 1998 Page 40 of 110

þ CyberMaster Command
þ RCX Command

 EndOfTask()

o Downloadable Command
þ Immediate Command

Part of BeginOfTask…EndOfTask sequence.

For further details see BeginOfTask.

 Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the return value = 1. Any error in the compile- and download
thread will result in a return value of 0.

Further info returned in:

DownloadStatus: The user will receive info about the task size (compiled), estimated
download time and task number in this event.

DownloadDone: When the download is finished the user will get this event. A non zero-
value (i.e. 1) indicates that an error occurred. A value of zero (0) indicates
that the transfer of the task was OK. If a 1 is received further information is
given in the AsyncronBrickError event. To synchronise these two events in a
single threaded application (e.g. Visual Basic) some user synchronisation
should be implemented: See Appendix A on page 102 for further details.

AsyncronBrickError: This event sends an ErrorNumber and an ErrorDescription

 Example 1:

PBrickCtrl.BeginOfTask 1
...
EndOfTask

Initialises download to task 1

Ends the download sequence.

Example 2:

PBrickCtrl.BeginOfTAsk 4
PBrickCtrl.On “01”
PBrickCtrl.SetFwd “2”

EndOfTask

Initialises download to task 4

Ends the download sequence.

Spirit.OCX Technical Reference

 Page 41 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 EndOfTaskNoDownload()

o Downloadable Command
þ Immediate Command

This command is used to gain info about the compiled and downloadable task in advance of the real
download.

If the amount of free RAM in the PBrick is small, the user can check for needed space by using this
command and the MemMap command, see page 28 for information about MemMap.

 Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the returned value is 1. Any error in the compile thread will result
in a return value of 0.

Further information returned in:

DownloadStatus: The user will receive info about the task size (compiled), esitmated download
time and task number in this event.

Example:

 Example 1: (The download function)

Storage for memory info
PBrickCtrl.BeginOfTask 1 Initialises download to task 1
...

PBrickCtrl.EndOfTaskNoDownload Ends the pseudo-download and get the
block-size etc. in the DownLoadStatus
event.

 Example 2: (The download info returned in the DownloadStatus event)

PBrickCtrl_DownloadStatus (ByVal DownloadTimeInMS As Long,
 ByVal sizeInBytes As Long,

ByVal taskNo As Integer)

Label1.Caption = DownloadTimeInMS Expected download time.
Label2.Caption = sizeInBytes Size of the compiled task in bytes.
Label3.Caption = taskNo Number of the task.

Spirit.OCX Technical Reference

November 1998 Page 42 of 110

þ CyberMaster Command
þ RCX Command

 BeginOfSub(Number)

o Downloadable Command
þ Immediate Command

Initialises a subroutine download sequence. All commands following this, and until the EndOfSub
or EndOfSubNoDownload command will be buffered in the ActiveX control. The real download to
the PBrick is started when the EndOfSub and EndOfSubNoDownload commands is reached.

When the download is finished, the ActiveX control will send the ‘DownloadDone’ event with
information about the result of the download. See page 97 for more information about the
DownloadDone event.

 Part: Description:

Return value: If the function succeeds , the return value is TRUE.
If the function fails, the return value is FALSE.

Example: This example downloads a program to Subroutine 1.

PBrickCtrl.BeginOfSub 1 Initialises download to Subroutine 1.
PBrickCtrl.Loop 2, 8 Loops 8 times through the following block.

PBrickCtrl.SumVar 3, 0, 2 Adds two to Variable 3.
PBrickCtrl.EndLoop

PBrickCtrl.EndOfSub
Ends the loop.
Ends the download sequence.

When EndOfSub command is reached, the program buffered in the ActiveX control will be
compiled, syntax checked and transferred to the PBrick via the transceiver tower.

Spirit.OCX Technical Reference

 Page 43 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 EndOfSub()

o Downloadable Command
þ Immediate Command

Part of BeginOfSub…EndOfSub sequence.

For details see BeginOfSub on page 42.

 Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the return value = 1. Any error in the compile- and download
thread will result in a return value of 0.

Further info returned in:

DownloadStatus: The user will receive info about the subroutine size (compiled), estimated
download time and task number in this event.

DownloadDone: When the download is finished the user will get this event. A non-zero
value (i.e. 1) indicates that an error occurred. A value of zero (0) indicates
that the transfer of the task was OK. If a value of 1 is received further
information is given in the AsyncronBrickError event. To synchronise these
two events in a singlethreaded application (e.g. Visual Basic) some user
synchronisation should be implemented. See Appendix A on page 102 for
further details.

AsyncronBrickError: This event sends an ErrorNumber and an ErrorDescription

 Example 1:

PBrickCtrl.BeginOfSub 1
...
PBrickCtrl.EndOfSub

Initialises download to subroutine 1

Ends the download sequence.

Example 2:

PBrickCtrl.BeginOfSub 1 Initialises download to subroutine 1
PBrickCtrl.On “1”
PBrickCtrl.AlterDir “2”
PBrickCtrl.PlaySystemSound 2

PBrickCtrl.EndOfSub
Ends the download sequence.

Spirit.OCX Technical Reference

November 1998 Page 44 of 110

þ CyberMaster Command
þ RCX Command

 EndOfSubNoDownload()

o Downloadable Command
þ Immediate Command

This command is used to gain info about the compiled and downloadable subroutine in advance of
the real download.

If the amount of free RAM in the PBrick is small, the user can check for needed space by using this
command and the MemMap command, see page 28 for information about MemMap.

 Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the returned value = 1. Any error in the compile- and download
thread will result in a return value of 0.

Further info returned in:

DownloadStatus: The user will receive info about the subroutine size (compiled), estimated
download time and subroutine number in this event.

 Example 1: (The download function)

PBrickCtrl.BeginOfSub 1
...

PBrickCtrl.EndOfSubNoDownload

Storage for memory info
Initialises download to subroutine 1

Ends the pseudo-download and get the block
size etc. in the DownloadStatus event.

Example 2: (The download info returned in the DownloadStatus event)

PBrickCtrl_DownloadStatus (ByVal DownloadTimeInMS As Long,
ByVal sizeInBytes As Long,
ByVal taskNo As Integer)

Label1.Caption = DownloadTimeInMS Expected download time.
Label2.Caption = sizeInBytes Size of the compiled subroutine in bytes.
Label3.Caption = taskNo Number of the subroutine.

Spirit.OCX Technical Reference

 Page 45 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 Poll(Source, Number)

o Downloadable Command
þ Immediate Command

This command is used to retrieve information/status from the PBrick. E.g. Variables, Timers, Input
information, Motor status etc.

 Part: Description:

Source, Source and Number is used to address what to ‘Poll’.
Number: See ranges in the ParameterTable on page 9.

Source: Number: Description:
0 0-31 Variable 0-31.
1 0-3 Timer 0-3.
2 - -
3 0,1,2 Motor status. The information is packed:

Bit 7: ON/OFF 1/0
Bit 6: Brake/Float 1/0
Bit 5: Output no. HiBit
Bit 4: Output no. LoBit
Bit 3: Direction CW/CCW 1/0
Bit 2: PowerLevel Most significant bit
Bit 1: PowerLevel
Bit 0: PowerLevel Least significant bit

4 - -
5 0,1 CyberMaster. TachoCounts. The Tacho value is approx. 50 counts per revolution of the

shaft.
6 0,1 CyberMaster. Tacho Speed. Normally a value between 0 and 90 [relative proportional

value].
7 2 CyberMaster. MotorCurrent [milli amps, approx. value], only valid for the external

motor 2.
8 - RCX. Program No. I.e. Actual program selected.
9 0,1,2 SensorValue. Value measured at an input. Depends on the actual mode of operation.

10 0,1,2 SensorType. Tells what type of sensor the input is set-up for.
11 0,1,2 SensorMode. Tells what mode the input is set-up for.
12 0,1,2 RCX. SensorRaw i.e. the analogue value measured at the input.
13 0,1,2 RCX. SensorBoolean. Returns the Boolean state of the input.
14 0 RCX. Watch. Integer where MSB = hours and LSB = minutes.
15 0 RCX. Returns the PBMessage stored internally in the RCX.
16 - CyberMaster. The AGC (automatic gain control) voltage from the CyberMaster Base Unit

[in millivolt].

Return value: The return value is the data/status asked for (16 bit signed Integer).
If the PBrick is not accessible (e.g. Turned off) an error will be issued. The
user application should have an error handler, e.g. Visual Basic On Error
Goto <lblMyErrorHandler>.

Spirit.OCX Technical Reference

November 1998 Page 46 of 110

 Example:

Label1.Caption = PBrickCtrl.Poll 0, 7 Label1 will be set equal to variable 7 of the
PBrick.

Label2.Caption = PBrickCtrl.Poll 7, 2 Label2 will be set equal to the
MotorCurrent of the external attached
motor (CyberMaster Base unit only).

Label3.Caption = PBrickCtrl.Poll 16, 0 Label3 will be set equal to the AGC level in
the receiver part of the CyberMaster Base
unit.

Spirit.OCX Technical Reference

 Page 47 of 110 November 1998

o CyberMaster Command
þ RCX Command

 SelectPrgm(Number)

o Downloadable Command
þ Immediate Command

Selects the active program. Used for changing active program.

This command acts like pressing the SelectPrgm button on the PBrick (RCX only).

 Part: Description:

Number: Program number to switch to (0-4).
See ParameterTable for ranges, page 10

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SelectPrgm 3 Selects program 4 (display shows 1-5 for program 0-4)

Spirit.OCX Technical Reference

November 1998 Page 48 of 110

þ CyberMaster Command
þ RCX Command

 StartTask(Number)

þ Downloadable Command
þ Immediate Command

Starts execution of PBrick’s task [Number]. Tasks always start from the beginning of the task (i.e.
the very first program line in the task). If the task [Number] was already running, it is stopped and
then restarted (from the very first program line in the task).

If no task was running before issuing this command:

RCX: CyberMaster:
The little man in the display on the PBrick
will start running.

The Run-LED will change from flashing
green to steady yellow.

 Part: Description:

Number: The task to be started.
See ParameterTable for range, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.StartTask 2 Task 2 (re)started and is now running.

Spirit.OCX Technical Reference

 Page 49 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 StopTask(Number)

þ Downloadable Command
þ Immediate Command

Stops execution of PBrick’s task [Number]. If all tasks are stopped:

RCX: CyberMaster:
The little man in the display on the PBrick
will stop running.

The yellow Run-LED will switch to steady
green (i.e. OFF).

 Part: Description:

Number: The task to be stopped.
See ParameterTable for range, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.StopTask 2 Task 2 stopped.

Spirit.OCX Technical Reference

November 1998 Page 50 of 110

þ CyberMaster Command
þ RCX Command

 StopAllTasks()

þ Downloadable Command
þ Immediate Command

Stops execution of all the PBrick’s Tasks.

RCX: CyberMaster:
The little man in the display on the PBrick
will stop running.

The Run-LED will switch off (from
yellow to green).

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

Label1.Caption = PBrickCtrl.StopAllTasks All tasks stopped ("Emergency stop")
If PBrick in range and the command
received and carried out - the text shown
in Label1 will display TRUE, if not
successful the text will be FALSE.

Spirit.OCX Technical Reference

 Page 51 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 DeleteTask(Number)

o Downloadable Command
þ Immediate Command

Deletes the addressed task [Number] in the selected program in the PBrick (If the task is running, it
is stopped first). If it was the only running task:

RCX: CyberMaster:
The little man in the display on the PBrick
will stop running.

The Run-LED will switch off (yellow to
solid green).

 Part: Description:

Number: Address of task to be deleted.
See ParameterTable for range, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

Label1.Caption = PBrickCtrl.DeleteTask 3 If the task 3 is deleted OK, the Label1 will
hold the text TRUE. If no success the
Label1 will hold the text FALSE.

Spirit.OCX Technical Reference

November 1998 Page 52 of 110

þ CyberMaster Command
þ RCX Command

 DeleteAllTasks()

o Downloadable Command
þ Immediate Command

Deletes all tasks of the currently selected program:

RCX: CyberMaster:
The little man in the display on the PBrick
will stop running.

All tasks are deleted and the Run-LED
will switch off (yellow to green).

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SelectPrgm 2
PBrickCtrl.DeleteAllTasks

Select program 2 in the RCX Pbrick
Erase all tasks in program 2.

Spirit.OCX Technical Reference

 Page 53 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 DeleteSub(Number)

o Downloadable Command
þ Immediate Command

Deletes the content of Subroutine [Number].
Any task curently using this subroutine, will automatically be stopped.

 Part: Description:

Number: The Subroutine to be deleted.
See ParameterTable for range, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:
In this program task 2 uses Subroutine 2, 3 and 4 task 3
uses Subroutine 2 and 4

PBrickCtrl.DeleteSub 3 Subroutine 3 is deleted and task 2 is stopped. Task 3
continues running.

Spirit.OCX Technical Reference

November 1998 Page 54 of 110

þ CyberMaster Command
þ RCX Command

 DeleteAllSubs()

o Downloadable Command
þ Immediate Command

Deletes the content of all Subroutines in the currently selected program (In CyberMaster all
Subroutines).
All tasks for the selected program currently using subroutines are automatically stopped.

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.DeleteAllSubs All the memory space for subroutines is cleared.

Spirit.OCX Technical Reference

 Page 55 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 On(MotorList)

þ Downloadable Command
þ Immediate Command

Starts the motors in the list. All other properties for the motors are not affected (Power, Direction,
etc.).

All motors (in MotorList) are started simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.On “02” Motor 0 and motor 2 are set on (started).

Spirit.OCX Technical Reference

November 1998 Page 56 of 110

þ CyberMaster Command
þ RCX Command

 Off(MotorList)

þ Downloadable Command
þ Immediate Command

This command stops the motors in the MotorList. The outputs are turned off in brake mode. All
other properties for the motors are not affected (Power, Direction etc.).

All motors (in MotorList) are stopped simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.Off “12” Motor 1 and Motor 2 are stopped in brake mode.

Spirit.OCX Technical Reference

 Page 57 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 Float(MotorList)

þ Downloadable Command
þ Immediate Command

This command turns the motor(s) in the list off in float mode i.e. the motors are stopped in a free
running mode. All other properties for the motors are not affected (Power, Direction etc.).

All motors (in MotorList) are stopped simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors to be stopped in floating
mode.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.Float “02” The motors 0 and 2 are stopped in float mode.

Spirit.OCX Technical Reference

November 1998 Page 58 of 110

þ CyberMaster Command
þ RCX Command

 SetFwd(MotorList)

þ Downloadable Command
þ Immediate Command

This command sets the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off etc.).

Direction for all motors (in MotorList) are changed simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors whose Direction Property
should be set to Forward.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetFwd “0” The direction of Motor 0 is set to forward.

Spirit.OCX Technical Reference

 Page 59 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SetRwd(MotorList)

þ Downloadable Command
þ Immediate Command

This command sets the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off etc.).

Direction for all motors (in MotorList) are changed simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors which should have their
direction set to Reverse.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetRwd “0” The Motor 0’s direction is set to reverse
direction.

Spirit.OCX Technical Reference

November 1998 Page 60 of 110

þ CyberMaster Command
þ RCX Command

 AlterDir(MotorList)

þ Downloadable Command
þ Immediate Command

This command alters the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off, etc.).

Direction for all motors (in MotorList) are changed simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors whose direction should be
altered.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example: Motor 1 is running in forward direction.

PBrickCtrl.AlterDir “1” The direction of Motor 1 is altered.

Now Motor 1 is running in the other direction.

Spirit.OCX Technical Reference

 Page 61 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SetPower(MotorList, Source, Number)

þ Downloadable Command
þ Immediate Command

Sets the Power property for the motor(s) in the MotorList. All other properties for the motors are
not affected (On/Off, Direction etc.).

Power for all motors (in MotorList) are changed simultaneously.

 Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.
See ParameterTable for ranges, page 9.

Source, Addresses the type and number of the source for the power level
Number: setting. See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetPower(“012”, 0, 15) The power of Motor 0, 1 and 2 is set to the
power level stored in Variable 15.

Spirit.OCX Technical Reference

November 1998 Page 62 of 110

þ CyberMaster Command
o RCX Command

 Drive(Number0, Number1)

o Downloadable Command
þ Immediate Command

This command sets all the properties for both motor 0, and motor 1.
This command is useful when fast updating of the driving motors is needed. E.g. when controlling
the PBrick directly by a joystick.

(The same function could have been achieved by sending these commands:
On/off+SetPower+SetFwd/SetRwd).

 Part: Description:

Number0, Data for motor 0 (left motor) and motor 1 (right motor).
Number1: Negative numbers means Rwd, positive numbers means Fwd.

Zero means stop (in brake mode).
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.Drive(-7, 7) The left motor set on, full speed and backwards. The right
motor set on, full and forward, i.e. the model turns on the
spot.

Spirit.OCX Technical Reference

 Page 63 of 110 November 1998

þ CyberMaster Command
o RCX Command

 OnWait(Motorlist, Number, Time)

þ Downloadable Command
o Immediate Command

This command is used to start one or more motor(s) with a specified power level and then wait for a
specified time. When the wait time is finished, the user application decides what to do next
(continue or stop etc.).
If the command is used with a time setting of 0, the command will act as a normal ON, but with an
additional power level/direction specified.

 Part: Description:

Motorlist: An ASCII string containing the names of motors to be started.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.

Number: Negative “Number” means reverse direction, positive “Number” means
 forward direction..

Zero means stop (in brake mode).

Time: The wait “Time” can be set to 0- 255, the time is in counts of 100ms. (I.e. 0
to 25.5 sec.). A zero (0) means no wait (i.e. the command acts as a normal
On/Off command).

See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.OnWait “12”, -3, 25

PBrickCtrl.OnWait “12”, 5, 0

Motor 1 and 2 On, Reverse direction, Power Level 3 and
Wait 2.5 sec.
Command used as an On command with additional power
setting.

Spirit.OCX Technical Reference

November 1998 Page 64 of 110

þ CyberMaster Command
o RCX Command

 OnWaitDifferent(Motorlist, Number0, Number1, Number2, Time)

þ Downloadable Command
o Immediate Command

This command is used to start more motors with different power levels/directions and then wait for
a specified time. When the wait time is finished, the user application decides what to do next
(continue or stop etc.).
If the command is used with a time setting of 0, the command will act as a normal ON, but with an
additional power level/direction specified.

 Part: Description:

Motorlist: An ASCII string containing the names of motors to be started.
Valid names: ‘0’, ‘1’ and ‘2’. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Output1 etc.

Number0, Number1,
Number2: Negative “NumberX” means reverse direction, positive “NumberX”
 Means forward direction..

Zero means stop (in brake mode).

Time: The wait “Time” can be set to 0- 255, the time is in counts of 100ms (i.e. 0 to
25.5 sec.) A zero (0) means no wait (i.e. the command acts as a normal
On/Off command).

See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.OnWaitDifferent “012”, -3, 3, -7, 25 Motor 0 On Power level 3 Reverse
direction.
Motor 1 On Power level 3 Forward
direction.
Motor 2 On Power level 7 Reverse
direction.
Wait 2.5 sec.

Spirit.OCX Technical Reference

 Page 65 of 110 November 1998

þ CyberMaster Command
o RCX Command

 ClearTachoCounter(MotorList)

þ Downloadable Command
þ Immediate Command

This command clears the TachoCounter. The TachoCounter is an integrated part of the 2 internal
motors.

 Part: Description:

MotorList An ASCII string containing the names of motors to be started.
Valid names: ‘0’ and ‘1’. But the ActiveX control will search the string and
remove other characters, so more readable names can be used: E.g. Motor0
etc.

See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.ClearTachoCounter “1” Clears the Tachovalue of Motor 1.

Spirit.OCX Technical Reference

November 1998 Page 66 of 110

þ CyberMaster Command
þ RCX Command

 PlayTone(Frequency, Time)

þ Downloadable Command
þ Immediate Command

This command is used to make the PBrick play a tone via the internal speaker. The Frequency
parameter sets the pitch of the tone and the Time parameter sets the duration of the tone. The tones
will be buffered in the RCX, if more than one tone is sent.

 Part: Description:

Frequency: Sets the frequency of the Tone. All integers in the range can be selected.
For range: See ParameterTable page 10.

To help those who wants to play ‘music’, there is a table below containing
the frequencies for the notes in eight octaves. The frequencies are rounded to
integers. (C4 is the middle C).

PITCH 1 2 3 4 5 6 7 8
G# 52 104 208 415 831 1661 3322
G 49 98 196 392 784 1568 3136
F# 46 92 185 370 740 1480 2960
F 44 87 175 349 698 1397 2794
E 41 82 165 330 659 1319 2637
D# 39 78 156 311 622 1245 2489
D 37 73 147 294 587 1175 2349
C# 35 69 139 277 554 1109 2217
C 33 65 131 262 523 1047 2093 4186
B 31 62 123 247 494 988 1976 3951
A# 29 58 117 233 466 932 1865 3729
A 28 55 110 220 440 880 1760 3520

Time: The duration of the Tone, in 10ms steps.
For range: See ParameterTable page 10.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.PlayTone 2000, 100 Plays 2000 Hz. for a duration of 1 sec.

Spirit.OCX Technical Reference

 Page 67 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 PlaySystemSound(Number)

þ Downloadable Command
þ Immediate Command

This command is used to make the RCX play one of 6 pre-defined sound patterns. The sounds will
be buffered in the RCX, if more than one is sent.

 Part: Description:

Number: Number addresses the sound to play.
Below is a short description of the predefined sound patterns, and some
guidelines for using them:

Number Sound Purpose
 0 ‘Key click’ Used by default when a key is pressed.
 1 ‘Beep beep’ Normally used as an ‘acknowledge’.
 2 Decreasing

frequency sweep
Used to indicate end of successful
download.

 3 Increasing
frequency sweep

Used by default to indicate end of
successful upload (e.g. Datalog)

 4 ‘Buhhh’ Error sound

 5 Fast increasing
sweep

Used three times in a row to indicate:
‘Hurrah sound’

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.PlaySystemSound 4 Audibly flag an error

Spirit.OCX Technical Reference

November 1998 Page 68 of 110

o CyberMaster Command
þ RCX Command

 SetSensorType(Number, Type)

þ Downloadable Command
þ Immediate Command

This command is used to specify the SensorType for an input. The Type information (and
SensorMode) tells the RCX how to use and represent Sensor data.
For information about SetSensorMode see page 69. See also the ‘Inputs’ on page 100.

 Part: Description:

Number: Addresses the input port for which the Type has to be set.

Type: Specifies the SensorType:

0: None
1: Switch
2: Temperature
3: Reflection (Light sensor)
4: Angle

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetSensorType 0, 4 Input 0 setup for using an Angle sensor.

Spirit.OCX Technical Reference

 Page 69 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SetSensorMode(Number, Mode, Slope)

þ Downloadable Command
þ Immediate Command

This command sets the SensorMode of the input. The analogue values can be represented and
calibrated in different pre-defined values. The digital representation can also be set to different
modes. By adding dynamic measurements, the user can apply a sort of “High Pass”-filter. The
change on the input shall have a certain minimum dVoltage/dTime. The mode information works
closely together with the SensorType setting.
For information about SetSensorType see page 68. See also the ‘Inputs’ on page 100.

 Part: Description:

Number: The input for which the Mode has to be set.

Mode: The sensor mode:

0: Raw Raw analogue data (0-1023)
1: Boolean TRUE/FALSE
2: Transition Counter All transitions are counted (both positive

and negative transitions are counted).
3: Periodic Counter Only counting whole periods (one

negative edge + a positive edge – or ‘vice
versa).

4: Percent Sensor value represented in percent of
full scale.

5: Celsius Measurement represented in Celsius.
6: Fahrenheit Measurement represented in Fahrenheit.
7: Angle Input data counted as Angle steps.

Slope: If Boolean mode of operation is selected, Slope indicates how to determine
TRUE and FALSE in SensorValue. This also affects the way counters reacts
on input changes.

0: Absolute measurement (below 45% of full scale = TRUE, above 55%
of full scale = FALSE). i.e. a pushed switch (low voltage measured)
results in a TRUE state.

1-31: Dynamic measurement. The number indicates the size of the dynamic
slope.
I.e. the necessary change of bit-counts between two samples, to
get a change in the Boolean state.

Spirit.OCX Technical Reference

November 1998 Page 70 of 110

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetSensorType 1, 1
PBrickCtrl.SetSensorMode 1, 1, 0

The sensor at input 1 is set as a switch
The switch data should be represented as boolean
and an absolute value.

Spirit.OCX Technical Reference

 Page 71 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 ClearSensorValue(Number)

þ Downloadable Command
þ Immediate Command

This command clears the sensor value register. (On the RCX: The sensor value register holds the
value which is shown in the display).

 Part: Description:

Number: Addresses the input whose input value register should be cleared.
See ParameterList for ranges on page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

An angle sensor is connected to input 1 of an RCX. The
angle sensor is turned 360 degrees 3 times and the display
shows 48 (3 * 16) steps.

PBrickCtrl.ClearSensorValue 1 Clear the sensor value register for input 1 (I.e. the middle
one labelled 2 on the RCX).
Now the display on the RCX shows an angle sensor reading
of zero (0).

Spirit.OCX Technical Reference

November 1998 Page 72 of 110

þ CyberMaster Command
þ RCX Command

 ClearTimer(Number)

þ Downloadable Command
þ Immediate Command

This command clears one of the four free-running Timers. The Number parameter indicates which
timer to clear. After this command is executed, the timer is set to zero (0), and the timer is restarted.

 Part: Description:

Number: Indicates which timer to clear.
For information about ranges see ParameterTable on page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.ClearTimer 2 Clears Timer 2 and restarts it.

Spirit.OCX Technical Reference

 Page 73 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 GoSub(Number)

þ Downloadable Command
o Immediate Command

This command is only for download. A subroutine cannot call another subroutine since the PBrick
has no call stack, but only a single return pointer. If the subroutine does not exist the call is ignored.
For information about how to download a subroutine see the function BeginOfSub on page 42.

 Part: Description:

Number: Addresses the subroutine to call.
For information about range etc. see ParameterTable on page 10.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.BeginOfSub 1
PBrickCtrl.PlaySystemSound 2
PBrickCtrl.On “12”

PBrickCtrl.EndOfSub

Starts Subroutine 1
Makes PBrick play SystemSound 2
Starts motors at output 1 and 2
Ends Subroutine 1 declaration

PBrickCtrl.BeginOfTask 0
PBrickCtrl.GoSub 1
...

Starts definition of Task 0
1st call of Subroutine 1

PBrickCtrl.GoSub 1
PBrickCtrl.EndOfTask

2nd call of Sub 1
End of Task 0

Spirit.OCX Technical Reference

November 1998 Page 74 of 110

þ CyberMaster Command
þ RCX Command

 Loop(Source, Number)

þ Downloadable Command
o Immediate Command

This command is part on the Loop…EndLoop control structure.
Program lines between Loop and EndLoop will be repeated as many times as the Source/Number
states at runtime.
However, there is an exception to this rule: A Loop 2, 0 statement means infinite loop.
If a Loop zero (0) is set-up via a variable or a random number at runtime, the Loop-EndLoop
structure will be entirely skipped, so the execution will not end in a deadlock if the source becomes
zero (0).

 Part: Description:

Source, Addresses and type for the source of the loop value.
Number: See ParameterTable on page 9 for information about range.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example 1:

PBrickCtrl.Loop 0, 3
...

Get the Loop count from variable 3
If variable 3 is zero (0) when the Loop 0, 3 statement is entered first
time, this line and the following lines are skipped.
If variable 3 was 2, when the Loop 0, 3 was entered first time, these
lines are executed 2 times.

PBrickCtrl.EndLoop

Example 2:

PBrickCtrl.Loop 2, 0
...

Loop Forever

PBrickCtrl.EndLoop

Spirit.OCX Technical Reference

 Page 75 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 EndLoop()

þ Downloadable Command
o Immediate Command

This command terminates the Loop…EndLoop control structure. For information about Loop see
page 74).

The EndLoop causes the loop count to be decremented and tested. If the loop count has not reached
zero (0), the program-execution is repeated again from the corresponding Loop statement.
If a Loop 2, 0 is used, the EndLoop acts as a normal unconditional jump back to the beginning of
the loop (i.e. loop forever).

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.Loop 2, 0
...

PBrickCtrl.EndLoop

Loop forever.

Jumps back to loop start and do it “forever”.

Spirit.OCX Technical Reference

November 1998 Page 76 of 110

þ CyberMaster Command
þ RCX Command

 While(Source1, Number1, RelOp, Source2, Number2)

þ Downloadable Command
o Immediate Command

This command is a part of the While…EndWhile control structure.
The program lines located between the While and EndWhile statement will be executed as long as
the Condition described by parameters evaluates TRUE.
The two values tested are addressed by Source1/Number1 and Source2/Number2.

 Part: Description:

Source1, Addresses the first CompareValue.
Number1: Check the ParameterTable on page 9 for types and ranges.

RelOp: This specifies the relational operator used for the compare of the two
CompareValues.

Relation Constant
Operator: equivalent:

> 0
< 1
= 2
< > 3

Source2, Addresses the second CompareValue.
Number2:

See ParameterTable on page 9 for information about types and ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetVar 5, 2, 0 Sets variable 5 = 0
PBrickCtrl.While 0, 5, 1, 2, 10
PBrickCtrl.PlayTone 1000, 10

While variable 5 < (constant) 10
Plays a 1000Hz tone for a 100ms.

PBrickCtrl.Wait 100 Waits 1 sec.
PBrickCtrl.SumVar 5, 2, 1 Increment variable 5 by 1.

PBrickCtrl.EndWhile Ends the While…EndWhile control structure.
The tone is played 10 times, with a 1 sec.
interval.

Spirit.OCX Technical Reference

 Page 77 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 EndWhile()

þ Downloadable Command
o Immediate Command

This command terminates the While…EndWhile control structure.
For further information see the While statement on page 76.

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

...
PBrickCtrl.While 0, 0, 0, 2, 3
...

PBrickCtrl.EndWhile

While variable 0 > (constant) 3

Spirit.OCX Technical Reference

November 1998 Page 78 of 110

þ CyberMaster Command
þ RCX Command

 If(Source1, Number1, RelOp, Source2, Number2)

þ Downloadable Command
o Immediate Command

This command is a part of the If…[Else]…EndIf control structure.
The program lines located between the If and EndIf statements will be executed if the condition
described by the parameters evaluates to TRUE.
If an Else block exists, this block will be executed if the If-statement evaluates to FALSE.
The two tested values are addressed by Source1/Number1 and Source2/Number2.

 Part: Description:

Source1, Addresses the source and type of the first compare value for the
Number1: Compare. See the ParameterTable on page 9 for ranges and type.

RelOp: This specifies the relational operator used for the compare of the two
Compare values.

Relation Constant
Operator: equivalent:

> 0
< 1
= 2
< > 3

Source2, Addresses the source and the type for the second compare value.
Number2:

See ParameterTable on page 9 for ranges and type.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.If 0, 5, 1, 2, 10
PBrickCtrl.PlayTone 1000, 10

If variable 5 < (constant)10 then
play a 1000 Hz tone for 100ms.

PBrickCtrl.EndIf() Close the conditional If…EndIf control structure.

PBrickCtrl.If 0, 5, 1, 2, 8 If variable 5 < (constant) 8 then
PBrickCtrl.PlayTone 1000, 10 play a 1000 Hz tone for 100ms.

PBrickCtrl.Else Start of the Else part
PBrickCtrl.PBTurnOff Else If variable 5 >= 8 then turn the PBrick OFF

PBrickCtrl.EndIf Close the If…Else…EndIf control structure.

Spirit.OCX Technical Reference

 Page 79 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 Else()

þ Downloadable Command
o Immediate Command

This command is part of the If…Else...EndIf control-structure.
See the If command on page 78 for further information.

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.If 2, 5, 2, 0, 15 If (constant) 5 = variable 15 then
PBrickCtrl.PlayTone 440, 20 play a 440 Hz tone for 200 ms.

PBrickCtrl.Else Else
PBrickCtrl.PlayTone 5000, 10 play a 5000 Hz. tone with a 100 ms. duration

PBrickCtrl.EndIf Close the If...Else...EndIf control-structure.

Spirit.OCX Technical Reference

November 1998 Page 80 of 110

þ CyberMaster Command
þ RCX Command

 EndIf()

þ Downloadable Command
o Immediate Command

This command is part of the If…[Else]...EndIf control structure. It closes the conditional control
structure.
For more information about the If statement see page 78.

 Part: Description:

Return value: If the command/function succeeds, the return value is TRUE.
If the command/function fails, the return value is FALSE.

 Example:

PBrickCtrl.If 0, 0, 1, 0, 2
PBrickCtrl.On “01”

PBrickCtrl.EndIf

If variable 0 < variable 2 then
Turns motor 0 and motor 1 ON
Closes the conditional part of program execution

Spirit.OCX Technical Reference

 Page 81 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 Wait(Source, Number)

þ Downloadable Command
o Immediate Command

This command is used to stop the program execution. It is only execution in the calling task which
is suspended for some time. The program execution is exclusively handed over to the other tasks.

 Part: Description:

Source, Addresses the source and the type for the waiting time [10 ms.
Number: resolution].

See the ParameterTable on page 9 for information about for ranges
and type.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.On “1”
PBrickCtrl.Wait 2, 1000

Turns output 1 ON
Waits (suspend execution in this
task) for 10 Sec.

Spirit.OCX Technical Reference

November 1998 Page 82 of 110

þ CyberMaster Command
þ RCX Command

 SetVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Sets the [VarNo] variable to the value addressed by the Source and Number parameters.

 Part: Description:

VarNo: The variable number to be set.

Source, Addresses the type and the source of the new value for the variable.
Number: See the ParameterTable on page 9 for more information about range and

type.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetVar 16, 2, 33 Initialises Variable 16 with the constant value 33.

Spirit.OCX Technical Reference

 Page 83 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SumVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Adds the value addressed by Source and Number to the [VarNo] variable. Result is stored in the
[VarNo] variable.

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be added and also
the destination for the result of the addition.

Source, This parameter addresses the source and type of the second source.
Number: See the ParameterTable on page 9 for information about ranges of

source and number.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SumVar 0, 0, 0 Adds Variable 0 to itself (Variable 0 = 2 * Variable 0).

Spirit.OCX Technical Reference

November 1998 Page 84 of 110

þ CyberMaster Command
þ RCX Command

 SubVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Subtracts the value addressed by Source and Number from the [VarNo] variable.

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be subtracted and also the
destination for the result of the subtraction.

Source, Addresses the value to subtract from the [VarNo] variable.
Number: See ParameterTable on page 9 for range.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SubVar 0, 2, 1 Decrements Variable 0 by 1

Spirit.OCX Technical Reference

 Page 85 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 DivVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Divides the [VarNo] variable with the value addressed by Source and Number. The result of the
division is stored in the [VarNo] variable.
The result is always rounded down to the nearest integer.
If the division results in a “divide by zero”, the result of the operation is defined and set to zero (0).

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be divided and also
the destination for the result of the division.

Source, Addresses the divisor.
Number: See ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.DivVar 0, 2, 3 Divides Variable 0 by 3. If Variable 0 is holding the value of 5
then the result will be 1 (always rounded down).

Spirit.OCX Technical Reference

November 1998 Page 86 of 110

þ CyberMaster Command
þ RCX Command

 MulVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Multiplies the [VarNo] variable with the value addressed by Source and Number. The result of the
multiplication is stored in the [VarNo] variable.
If the result is bigger than a signed 16 bit integer, the result is rounded to lie within the interval:
 -32768 or 32767.

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be multiplied and also the
destination for the result of the multiplication.

Source, Addresses the value to multiply with the [VarNo] variable.
Number: See ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.MulVar 2, 2, 8 Multiplies Variable 2 by a constant of 8.

Spirit.OCX Technical Reference

 Page 87 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 SgnVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Stores the result of the test of the value addressed by Source and Number in the [VarNo] variable.

If the addressed value > 0 then [VarNo] variable is set to 1.
If the addressed value = 0 then [VarNo] variable is set to 0.
If the addressed value < 0 then [VarNo] variable is set to -1.

 Part: Description:

VarNo: Addresses the [VarNo] variable to hold the result of the sign test.

Source, Addresses the source for the sign test.
Number: See ParameterTable on page 10 for ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SgnVar 0, 0, 12 If variable 12 = -24 then Variable 0 is set to -1
If variable 12 = 0 then Variable 0 is set to 0
If variable 12 = 2255 then Variable 0 is set to 1

Spirit.OCX Technical Reference

November 1998 Page 88 of 110

þ CyberMaster Command
þ RCX Command

 AbsVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Stores the absolute value of the value addressed by Source and Number in the [VarNo] variable.

 Part: Description:

VarNo: The [VarNo] variable used as destination for the result.

Source, Addresses the source and type for the requested value, from which the
Number: Abs-value should be evaluated.

Look in the ParameterTable on page 9 for range.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.AbsVar 2, 0, 7 If variable 7 is -33 then variable 2 is set to 33 (Abs of -33)

Spirit.OCX Technical Reference

 Page 89 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 AndVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Performs a bitwise AND operation between [VarNo] variable and the value addressed by Source
and Number. The result is stored in the [VarNo] variable.

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be AND’ed and also the
destination for the result of the AND operation.

Source, Addresses the source and type of the second source for the AND.
Number: See the ParameterTable on page 10 for ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.AndVar 0, 2, 7 If Variable 0 holds the value 17 decimal (10001
binary) then this command line will put the value
1 into Variable 0.

Spirit.OCX Technical Reference

November 1998 Page 90 of 110

þ CyberMaster Command
þ RCX Command

 OrVar(VarNo, Source, Number)

þ Downloadable Command
þ Immediate Command

Performs a bitwise OR operation between [VarNo] variable and the value addressed by Source and
Number. The result is stored in the [VarNo] variable.

 Part: Description:

VarNo: The [VarNo] variable is both source of the value to be OR’ed and also the
destination for the result of the OR operation.

Source, Addresses the source and type for the bitwise OR operation.
Number: See the ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.OrVar 5, 2, 1 If Variable 5 is set to 4 (100 binary)
then this command will fill 5 into Variable 5 (101 binary).

Spirit.OCX Technical Reference

 Page 91 of 110 November 1998

o CyberMaster Command
þ RCX Command

 SetDatalog(Size)

o Downloadable Command
þ Immediate Command

Allocates the datalog area. A previous allocated datalog area is automatically erased. Each element
of a datalog allocates 3 bytes in the PBrick. The datalog area ranges from 1 to Size. The element 0
of the datalog area (can be accessed by the UploadDatalog(0, 1)) always reflects the maximum
available datalog area [Size].

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.SetDatalog 50 Initialises a datalog area of 50 elements.

Spirit.OCX Technical Reference

November 1998 Page 92 of 110

o CyberMaster Command
þ RCX Command

 DatalogNext(Source, Number)

þ Downloadable Command
þ Immediate Command

This command forces a new sample of the value addressed by the Source and Number. The PBrick
automatically increments its internal datalog pointer. If the end of the datalog area is reached,
nothing happens. I.e. the Datalog area is not overwritten by automatic “wrap around”.

The user can use a counter in the RCX and use SetDatalog(Size) from a PC program monitoring
the counter to make a pseudo wrap around.

 Part: Description:

Source, Number: Value to log: Source: Number:
Var 0 - 31 0 0 - 31
Timer 0 - 3 1 0 - 3

Input(SensorValue) 0 - 2 9 0 - 2
Watch 14 0

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

Asynchronous datalog. The individual samples are time
stamped.

PBrickCtrl.DatalogNext 14, 0 Time stamp
PBrickCtrl.DatalogNext 9, 1 Datalog sensor 1
PBrickCtrl.DatalogNext 9, 0 Synchronous datalog. E.g. the sampling forced by a timer or

another trigger.

Spirit.OCX Technical Reference

 Page 93 of 110 November 1998

o CyberMaster Command
þ RCX Command

 UploadDatalog(From, Size)

o Downloadable Command
þ Immediate Command

This command is used for getting the logged data from the RCX. The start and size of the uploaded
datalog is defined in From and Size. For information about SetDatalog see page 91.

 Part: Description:

From: Addresses the start point for the upload.

Size: Defines the size of the upload.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

Private Sub Command1_Click()
Dim arr As Variant
Dim i As Integer
Dim from As Integer
Dim datalength As Integer

Variant array-type
Array index stepper
“Pointer” to first wanted element
Size of upload

from = Val(Text1.Text)
datalength = Val(Text2.Text)

User request of starting point
Size of requested upload

arr = PBrickCtrl.UploadDatalog(from, Datalength) Perform the Upload

If IsArray(arr) Then Check for a valid array (variant)

For i = LBound(arr, 2) To UBound(arr, 2) Iterate over the whole array

List1.AddItem "Type: " + Str(arr(0, i)) +
" No. " + Str(arr(1, i)) +
" Value: " + Str(arr(2, i))

Display the uploaded data in the
Listbox

“List1”:
Type: x No. y Value: zzzz

Next I Continue until all elements are
displayed

Else
MsgBox “Upload NOT a valid array”

End If

If arr not a valid array
Some debug info

End Sub End of upload

Spirit.OCX Technical Reference

November 1998 Page 94 of 110

o CyberMaster Command
þ RCX Command

 SendPBMessage(Source, Number)

þ Downloadable Command
o Immediate Command

This command makes the PBrick transmit a message on the IR-communication channel.
The command enables two PBrick’s to communicate/interact with each other, without any link to a
PC. It is not possible to use this command and having a PC communicating with the PBrick
simultaneously. This is due to the IR-channel being common to both sorts of communication.

 Part: Description:

Source, Addresses the type and source for use as message.
Number: For ranges see ParameterTable on page 9.

Return value: If the function succeeds, the return value is TRUE.
 If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.BeginOfTask 2
PBrickCtrl.If 0, 2, 2, 2, 55

PBrickCtrl.SendPBMessage 0, 10
PBrickCtrl.EndIf

PBrickCtrl.EndOfTask

If Variable 2 = 55
then send the PBrick message stored in
Variable 10 to the other PBrick.

Spirit.OCX Technical Reference

 Page 95 of 110 November 1998

o CyberMaster Command
þ RCX Command

 ClearPBMessage()

þ Downloadable Command
o Immediate Command

Clears the PBrick message stored internally in the PBrick.

 Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

 Example:

PBrickCtrl.BeginOfTask 3
PBrickCtrl.ClearPBMessage

PBrickCtrl.EndOfTask
Clears the PBrick message register.

Spirit.OCX Technical Reference

November 1998 Page 96 of 110

þ CyberMaster Command
þ RCX Command

 [OLE Event]: VariableChange (Number, Value)

This is the event sent from the ActiveX control when the addressed source has changed value.
By using this function the impact on the user application will be minimal, when constantly checking
resources in the PBrick.
Currently only changes of variable zero (0) can be polled this way. The user can download tasks
which automatically update variable 0 with different data.
The source, type and address are set by the command SetEvent, see page 37.

 Part: Description:

Number: The address of the autopolled and changed data.

Value: The value of the autopolled and changed data.

 Example:

Private Sub Command1_Click()
Dim Src As Integer Type of source for the

event
Dim No As Integer Address of the source
Dim Tim As Integer Autopoll time

Src = Val(Text1.Text) User input for what to poll
No = Val(Text2.Text) and how often.
Tim = Val(Text3.Text)
Label1.Caption = PBrickCtrl.SetEvent(Src, No, Tim) Setup the autopoll

End Sub

Private Sub PBrickCtrl_VariableChange(ByVal Number As Integer,
ByVal Value As Integer)

Label2.Caption = Value Show the autopolled data
End Sub

Spirit.OCX Technical Reference

 Page 97 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 [OLE Event]: DownloadDone (ErrorCode, TaskNo)

The DownloadDone event is sent from the ActiveX control as soon as the download is finished or
an error has terminated the download.
ErrrorCode is an error flag. The TaskNo addresses which tasknumber or subroutine number the
error flag refers to.
If the download is a firmware download (RCX only) the TaskNo will always contain the number
100.
Use the AsyncronBrickError event, if ErrorCode <> 0 (i.e. ErrorCode = 1), to get more information
about an error.

 Part: Description:

ErrorCode: ErrorCode [name]: ErrorCode [number]:

RCX: CyberMaster:
OKDownload. 0x00 0x00
Download Failed.
The user should use the
AsyncronBrick error to get
more information.

0x01 0x01

The variable TaskNo can signal: Task numbers, sub numbers and firmware.

TaskNo.: RCX: CyberMaster:
Task: 00-09 Task: 00-04
Sub: 10-17 Sub: 10-13
Firmware: 100 -----------

 Example: (A TASK download)

Private Sub PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer,
ByVal TaskNo As Integer)

If ErrorCode <> 0 Then If a download error occurs 2 labels are set to values of
ErrorCode and TaskNo respectively.

 Label1.Caption = “Error in download” Flag error.

Else
 Label1.Caption = “Download OK” Flags an OK download
End If
Label2.Caption = TaskNo Reports the download number (type)

End Sub

Spirit.OCX Technical Reference

November 1998 Page 98 of 110

þ CyberMaster Command
þ RCX Command

[OLE Event]: DownloadStatus (timeInMS, sizeInBytes, taskNo)

This event is used to get an estimated download time, the size of the compiled code for download
and a reference to the task or sub. If an application only needs the time for a download and/or the
size of the task/sub, but not a real download, then the EndOfTaskNoDownload (or
EndOfSubNoDownload) should be used.

 Part: Description:

TimeInMS Estimated download time without any retransmissions etc.
The value is returned as a 32 bit integer Long.

sizeInBytes The size of the compiled task or subroutine.
The value is returned as a Long.

taskNo This number represents a reference to the task, sub or download of firmware.
The value is returned as an Integer.

TaskNo.: RCX: CyberMaster:
Task: 00-09 Task: 00-04
Sub: 10-17 Sub: 10-13
Firmware: 100 -----------

 Example:

Private Sub PBrickCtrl_downloadStatus(ByVal timeInMS As Long,
ByVal sizeInBytes As Long,
ByVal taskNo As Integer)

Label1.Caption = timeInMS
Label2.Caption = sizeInBytes
Label3.Caption = taskNo

End Sub

Spirit.OCX Technical Reference

 Page 99 of 110 November 1998

þ CyberMaster Command
þ RCX Command

 [OLE Event]: AsyncronBrickError (Number, Description)

This event is sent from the download thread via the ActiveX control. If the DownloadDone event
returns an error code <> from zero (0), the application should use this event to get more
information. See appendix A, page 102 for more information about asynchronous error handling.

 Part: Description:

Number: A number referring to a specific error. See appendix B on page 104
for more information about the error codes.

Description: A textual error message. These messages can e.g. be used by the
application as a text in a MessageBox. See appendix B, page 104 for more
information about these messages.

 Example:

Private Sub PBrickCtrl_AsyncronBrickError(ByVal Number As Integer,
Description As String)

Label1.Caption = Number
Label2.Caption = Description

End Sub

Spirit.OCX Technical Reference

November 1998 Page 100 of 110

 Inputs:
There are 3 inputs which are sampled by a 10bit A/D converter.

RCX: CyberMaster:
Inputs are able to source power for active
sensors. The power sourcing is switched
on and off, depending on the type of
sensor attached to the input.

Inputs are not able to source any power
for active sensors.

 Outputs:
There are 3 Outputs capable of sourcing 9V power for LEGO motors, bulbs etc.
Power can be controlled in 8 power levels. (See SetPower, page 61).

 Immediate Control:
It is possible to control the PBrick without downloading any programs to it. These commands are
executed immediately and are called immediate commands. See OCX Overview page 8.

 Tasks:
The PBrick provides a multitasking environment, making it possible to execute up to 10 tasks in
parallel (4 for CyberMaster).
All tasks have access to an interpreter, which executes the downloaded commands.

As soon as a program sequence is downloaded to one of the tasks, it is possible to start program
execution of that task (See StartTask, page 48).

 Events:
It is possible to set-up the ActiveX control to automatically poll the PBrick for status on Variable 0,
and then generate an event if changes has occurred.
This is a time-optimised way of getting information of changes in the PBrick.

(See SetEvent, page 37).

Spirit.OCX Technical Reference

 Page 101 of 110 November 1998

 Timers:
There are 4 free-running Timers in the PBrick, with a resolution of 100 ms. They can be cleared
individually. As soon as they are cleared they start running again (See ClearTimer, Page 72).

 Variables:
There are 32 (Global) variables in the PBrick, defined as signed 16 bit integers within the interval:
 -32768 to 32767.

 Properties:

Set the PC’s COM-port 1
or 2

Set the LinkType.
InfraRed (RCX), Cable or
Radio (CyberMaster).

Set the PBrick to use
RCX PB or CyberMaster
PB.

Spirit.OCX Technical Reference

November 1998 Page 102 of 110

Appendices

 Appendix A:

Errorhandling while downloading code to the PBrick:

The DownloadDone event reports the result of the operation. If the ErrorCode returned by the DownloadDone event <>
zero (0) an error has occured.

To get information about this error, it is necessary to check the AsyncronBrickError event. But it is not as simple as it
appears. If the OCX (ActiveX) control sends an event and forces a dialog-box to be opened, all other events sent from
the ActiveX control to the Visual Basic application will disappear.

A possible workaround is outlined below:

1) A flag should be defined in the General/Declaration section:

Dim waitForDD As Boolean

2) In the Form_Load event handler this flag is set to false (i.e. initialised as “not waiting”):

waitForDD = False

3) In the AsyncronBrickError event handler the application checks for the “waiting on a DownloadDone
event” i.e. check the waitForDD flag.
By doing so, the AsyncronBrickError event handler waits until the DownloadDone event has occurred and the
DownloadDone event handler has finished its job.
This means the two events are synchronised.

Private Sub PBrickCtrl_AsyncronBrickError(ByVal Number As Integer,
Description As String)

If (waitForDD) Then
 While (waitForDD)

DoEvents
 Wend
 MsgBox "AsyncronBrickError: " + Str(Number) + " " + Description

Else
 MsgBox "AsyncronBrickError: " + Str(Number) + " " + Description

End If
End Sub

Spirit.OCX Technical Reference

 Page 103 of 110 November 1998

4) The DownloadDone event handler resets the synchronisation flag. I.e. it clears waitForDD.

Private Sub PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer,
ByVal DownloadNo As Integer)

If ErrorCode = 0 Then
MsgBox "Download Done and OK" ok

Else
 MsgBox "Download Failed!"
 End If

waitForDD = False
End Sub

5) In the application the synchronisation flag waitForDD should be set before any downloading takes place.

-
-
waitForDD = True Set the flag.
-
-
PBrickCtrl.SetSensorType 0, 2 Sensor 0 is a temperature and
PBrickCtrl.SetSensorMode 0, 5, 0 configured to read Celsius

PBrickCtrl.BeginOfTask 1 Begin task
PBrickCtrl.Loop 2, 0

PBrickCtrl.SetVar 0, 9, 0
PBrickCtrl.Wait 2, 90

PBrickCtrl.EndLoop
PBrickCtrl.EndOfTask
-
-

End task. I.e. download the task.

Spirit.OCX Technical Reference

November 1998 Page 104 of 110

 Appendix B:

LEGOPBRICK ERRORCODES:

"UNKNOWN”
UNKNOWN = 2000

"FATAL"
FATAL = 2001

"PROGRAM_ERROR"
PROGRAM_ERROR = 2002

"PIPE_TO_THREAD_ERROR_SENDER"
PIPE_TO_THREAD_ERROR_SENDER = 2003

"PIPE_TO_THREAD_ERROR_RECEIVER"
PIPE_TO_THREAD_ERROR_RECEIVER = 2004

"TOO_MANY_RESENDS"
TOO_MANY_RESENDS = 2005

Download Thread, syntax errors

“SYNTAX_MATCHING_ENDIF_NOT_FOUND"
SYNTAX_MATCHING_ENDIF_NOT_FOUND = 2006

"SYNTAX_MATCHING_ENDWHILE_NOT_FOUND"
SYNTAX_MATCHING_ENDWHILE_NOT_FOUND = 2007

"SYNTAX_MATCHING_ENDLOOP_NOT_FOUND"
SYNTAX_MATCHING_ENDLOOP_NOT_FOUND = 2008

"SYNTAX_END_REACHED_TOO_SOON"
SYNTAX_END_REACHED_TOO_SOON = 2009

"SYNTAX_TO_MANY_NESTED_LOOPS_IN_TASK"
SYNTAX_TO_MANY_NESTED_LOOPS_IN_TASK = 2010

"SYNTAX_TO_MANY_NESTED_LOOPS_IN_SUB"
SYNTAX_TO_MANY_NESTED_LOOPS_IN_SUB = 2011

"SYNTAX_ENDOFSUB_RECIEVED_ENDOFTASK_EXPECTED"
SYNTAX_ENDOFSUB_RECIEVED_ENDOFTASK_EXPECTED = 2012

"SYNTAX_ENDOFTASK_RECIEVED_ENDOFSUB_EXPECTED"
SYNTAX_ENDOFTASK_RECIEVED_ENDOFSUB_EXPECTED = 2013

"SYNTAX_GOSUB_NOT_ALLOWED_IN_SUBS"
SYNTAX_GOSUB_NOT_ALLOWED_IN_SUBS = 2014

"DOWNLOAD_ERROR"
DOWNLOAD_ERROR = 2015

"DOWNLOADFIRMWARE_ERROR"
DOWNLOADFIRMWARE_ERROR = 2016

"DOWNLOAD_FROM_FILE"
DOWNLOAD_FROM_FILE = 2017

"DOWNLOAD_NOT_ENOUGH_MEMORY"
 DOWNLOAD_NOT_ENOUGH_MEMORY = 2018
"DOWNLOAD_ERROR_IN_DOWNLOAD_CHECKSUM"

DOWNLOAD_ERROR_IN_DOWNLOAD_CHECKSUM = 2019
"DOWNLOAD_ERROR_IN_DOWNLOAD_RAMCHECKSUMERROR"

DOWNLOAD_ERROR_IN_DOWNLOAD_RAMCHECKSUMERROR = 2020

Spirit.OCX Technical Reference

 Page 105 of 110 November 1998

Main thread:

"RETURN_ERROR_FROM_BRICK"
RETURN_ERROR_FROM_BRICK = 2021

"RANGE_CHECK_ERROR"
RANGE_CHECK_ERROR = 2022

“SEMANTIC_IF_ARGUMENTS_OUT_OF_RANGE"
SEMANTIC_IF_ARGUMENTS_OUT_OF_RANGE = 2023

“SEMANTIC_WHILE_ARGUMENTS_OUT_OF_RANGE"
SEMANTIC_WHILE_ARGUMENTS_OUT_OF_RANGE = 2024

"SEMANTIC_LOOP_ARGUMENTS_OUT_OF_RANGE"
SEMANTIC_LOOP_ARGUMENTS_OUT_OF_RANGE = 2025

Extra:

"DOWNLOAD_ERROR_UNKNOWN"
DOWNLOAD_ERROR_UNKNOWN = 2026

"DOWNLOAD_ALREADY_IN_DL_WHEN_RECIEVING_BEGIN"
DOWNLOAD_ALREADY_IN_DL_WHEN_RECIEVING_BEGIN = 2027

“DOWNLOAD_BRICK_IS_NOT_IN_DL_MODE"
DOWNLOAD_BRICK_IS_NOT_IN_DL_MODE = 2028

“DOWNLOAD_SYNTAX_ERROR_IN_BLOCK"
DOWNLOAD_SYNTAX_ERROR_IN_BLOCK = 2029

Spirit.OCX Technical Reference

November 1998 Page 106 of 110

 Appendix C – RCXdata.bas:

'==
'
' Project: MindStorms
' Unit : Global module
' Rev. : 1.0
'
'--
'
' Declaration of global names for RCX-related constants
'
'==

Option Explicit

'==
' System sounds
'==

Public Const CLICK_SOUND = 0
Public Const BEEP_SOUND = 1
Public Const SWEEP_DOWN_SOUND = 2
Public Const SWEEP_UP_SOUND = 3
Public Const ERROR_SOUND = 4
Public Const SWEEP_FAST_SOUND = 5

'==
' Source names
'==

Public Const VAR = 0
Public Const TIMER = 1
Public Const CON = 2
Public Const MOTSTA = 3
Public Const RAN = 4
Public Const TACC = 5
Public Const TACS = 6
Public Const MOTCUR = 7
Public Const KEYS = 8
Public Const SENVAL = 9
Public Const SENTYPE = 10
Public Const SENMODE = 11
Public Const SENRAW = 12
Public Const BOOL = 13
Public Const WATCH = 14
Public Const PBMESS = 15

'==
' Sensor names
'==

Public Const SENSOR_1 = 0
Public Const SENSOR_2 = 1
Public Const SENSOR_3 = 2

'==
' Timer names
'==

Public Const TIMER_1 = 0
Public Const TIMER_2 = 1
Public Const TIMER_3 = 2
Public Const TIMER_4 = 3

Spirit.OCX Technical Reference

 Page 107 of 110 November 1998

'==
' Tacho names (CyberMaster only)
'==

Public Const LEFT_TACHO = 0
Public Const RIGHT_TACHO = 1

'==
' Sensor types
'==

Public Const NO_TYPE = 0
Public Const SWITCH_TYPE = 1
Public Const TEMP_TYPE = 2
Public Const LIGHT_TYPE = 3
Public Const ANGLE_TYPE = 4

'==
' Sensor modes
'==

Public Const RAW_MODE = 0
Public Const BOOL_MODE = 1
Public Const TRANS_COUNT_MODE = 2
Public Const PERIOD_COUNT_MODE = 3
Public Const PERCENT_MODE = 4
Public Const CELSIUS_MODE = 5
Public Const FAHRENHEIT_MODE = 6
Public Const ANGLE_MODE = 7

'==
' Output names
'==

Public Const OUTPUT_A = 0
Public Const OUTPUT_B = 1
Public Const OUTPUT_C = 2

'==
' Logical comparison operators
'==

Public Const GT = 0
Public Const LT = 1
Public Const EQ = 2
Public Const NE = 3

'==
' Time constants
'==

Public Const MS_10 = 1
Public Const MS_20 = (2 * MS_10)
Public Const MS_30 = (3 * MS_10)
Public Const MS_40 = (4 * MS_10)
Public Const MS_50 = (5 * MS_10)
Public Const MS_60 = (6 * MS_10)
Public Const MS_70 = (7 * MS_10)
Public Const MS_80 = (8 * MS_10)
Public Const MS_90 = (9 * MS_10)
Public Const MS_100 = (10 * MS_10)
Public Const MS_200 = (20 * MS_10)
Public Const MS_300 = (30 * MS_10)
Public Const MS_400 = (40 * MS_10)
Public Const MS_500 = (50 * MS_10)
Public Const MS_700 = (70 * MS_10)
Public Const SEC_1 = (100 * MS_10)
Public Const SEC_2 = (2 * SEC_1)
Public Const SEC_3 = (3 * SEC_1)
Public Const SEC_5 = (5 * SEC_1)
Public Const SEC_10 = (10 * SEC_1)
Public Const SEC_15 = (15 * SEC_1)
Public Const SEC_20 = (20 * SEC_1)
Public Const SEC_30 = (30 * SEC_1)
Public Const MIN_1 = (60 * SEC_1)

Spirit.OCX Technical Reference

November 1998 Page 108 of 110

 Appendix D - GetStarted.bas:

'==
'
' Project: MindStorms explanatory demo project
' Unit : Global module
' Rev. : 1.0
'
'--
'
' Declaration of global names for sensors, tasks, subroutines, timers, varia-
' bels and constants.
'
' !!! IMPORTANT NOTICE - WARNING !!!
'
' It is the responsibility of the application programmer to allocate the program,
' sub, task and variable numbers without overlap in the individual programs.
'
'==

Option Explicit

'==
' Program names
'
' Syntax: <descriptive name>Prog
' Range: 0 to 4 (RCX), 0 (CyberMaster)
'==

Public Const MotorControlProg = 0

'==
' Task names
'
' Syntax: <descriptive name>Task
' Range: 0 to 9 (RCX), 0 to 3 (CyberMaster)
'==

Public Const MotorOnOffTask = 0

'==
' Subroutine names
'
' Syntax: <descriptive name>Sub
' Range: 0 to 7 (RCX), 0 to 3 (CyberMaster)
'==

Public Const NiceAndHandySub = 0
Public Const UsefulAndSmallSub = 1 ' and so on

'==
' Sensor names
'
' Syntax: s<descriptive name>
'==

Public Const sStopButton = SENSOR_1
Public Const sSearchLight = SENSOR_2

'==
' Output/motor names
'
' Syntax: o<descriptive name> || m<descriptive name>
'==

Public Const oBlink = OUTPUT_A
Public Const mForward = OUTPUT_B

Spirit.OCX Technical Reference

 Page 109 of 110 November 1998

'==
' Timer names
'
' Syntax: t<descriptive name>
'==

Public Const tDrum = TIMER_1
Public Const tStick = TIMER_2 ' and so on

'==
' Variable names
'
' Syntax: v<descriptive name>
'==

Public Const vLeftThreshold = 0
Public Const vRightThreshold = 1

'==
' Constant declarations
'
' Syntax: k<descriptive name>
'==

Public Const kForever = 0
Public Const kThresholdOffset = 50

'--
' Logical constants
'--

Public Const kFalse = 0
Public Const kTrue = 1

'--
' Motor control constants
'--

Public Const kOff = 0
Public Const kOn = 1
Public Const kFullSpeed = 7

'--
' Your own stuff
'--

Public Const kFirm = 0
Public Const kFixed = 1
' and so on

Spirit.OCX Technical Reference

November 1998 Page 110 of 110

'==
' Timer names
'
' Syntax: t<descriptive name>
'==

Public Const tDrum = TIMER_1
Public Const tStick = TIMER_2 ' and so on

'==
' Variable names
'
' Syntax: v<descriptive name>
'==

Public Const vLeftThreshold = 0
Public Const vRightThreshold = 1

'==
' Constant declarations
'
' Syntax: k<descriptive name>
'==

Public Const kForever = 0
Public Const kThresholdOffset = 50

'--
' Logical constants
'--

Public Const kFalse = 0
Public Const kTrue = 1

'--
' Motor control constants
'--

Public Const kOff = 0
Public Const kOn = 1
Public Const kFullSpeed = 7

'--
' Your own stuff
'--

Public Const kFirm = 0
Public Const kFixed = 1
' and so on

	Content
	Foreword
	LICENSE AGREEMENT
	Introduction
	Table of Contents
	OCX Overview
	Nomenklature
	Communication control
	InitComm()
	CloseComm()
	GetShortTermRetransStatistics()
	GetLongTermRetransmitStatistics()
	SetRetransmitRetries(ImmidiateRetries, DownloadRetries)
	IgnDLerrUntilGoodAnswer()

	Firmware control
	UnlockPBrick()
	UnlockFirmware(UnlockString)
	DownloadFirmware(FileName)

	Diagnostics commands
	PBAliveOrNot()
	TowerAndCableConnected()
	TowerAlive()

	PBrick System commands
	SelectDisplay(Source, Number)
	SetWatch(Hours, Min)
	PBPowerDownTime(Time)
	PBTurnOff()
	PBTxPower(Number)
	PlayTone(Frequency, Time)
	PlaySystemSound(Number)
	ClearTimer(Number)
	SendPBMessage(Source, Number)
	ClearPBMessage()

	PBrick Output control
	On(MotorList)
	Off(MotorList)
	Float(MotorList)
	SetFwd(MotorList)
	SetRwd(MotorList)
	AlterDir(MotorList)
	SetPower(MotorList, Source, Number)
	Wait(Source, Number)
	Drive(Number0, Number1)
	OnWait(Motorlist, Number, Time)
	OnWaitDifferent(Motorlist, Number0, Number1, Number2, Time)
	ClearTachoCounter(MotorList)

	PBrick Input control
	SetSensorType(Number, Type)
	SetSensorMode(Number, Mode, Slope)
	ClearSensorValue(Number)

	PBrick Program control
	SelectPrgm(Number)
	DeleteTask(Number)
	DeleteAllTasks()
	DeleteSub(Number)
	DeleteAllSubs()

	PBrick Program Execution control
	StartTask(Number)
	StopTask(Number)
	StopAllTasks()
	GoSub(Number)

	PBrick Flow control
	Loop(Source, Number)
	EndLoop()
	While(Source1, Number1, RelOp, Source2, Number2)
	EndWhile()
	If(Source1, Number1, RelOp, Source2, Number2)
	Else()
	EndIf()
	BeginOfTask(Number)
	EndOfTask()
	EndOfTaskNoDownload()
	BeginOfSub(Number)
	EndOfSub()
	EndOfSubNoDownload()

	PBrick Arithmetic/Logical commands
	SetVar(VarNo, Source, Number)
	SumVar(VarNo, Source, Number)
	SubVar(VarNo, Source, Number)
	DivVar(VarNo, Source, Number)
	MulVar(VarNo, Source, Number)
	SgnVar(VarNo, Source, Number)
	AbsVar(VarNo, Source, Number)
	AndVar(VarNo, Source, Number)
	OrVar(VarNo, Source, Number)

	PBrick Query commands
	SetEvent(Source, Number, Time)
	ClearEvent(Source, Number)
	Poll(Source, Number)
	PBBattery()
	MemMap()

	PBrick data acquisition commands (RCX only):
	SetDatalog(Size)
	DatalogNext(Source, Number)
	UploadDatalog(From, Size)

	ActiveX Control
	SetThreadPriority(threadNo, threadClass, ThreadPriority)
	GetThreadPriority(threadNo, threadClass, ThreadPriority)

	ActiveX Event Dispatch interface
	[OLE Event]: VariableChange (Number, Value)
	[OLE Event]: DownloadDone (ErrorCode, TaskNo)
	[OLE Event]: DownloadStatus (DownloadTimeInMS, sizeInBytes, taskNo)
	[OLE Event]: AsyncronBrickError (Number, Description)

	ParameterTable #1
	ParameterTable #2
	Appendix A: Errorhandling while downloading code to PBrick
	Appendix B: Errorcodes
	Appendix C: RCXdata.bas
	Appendix D: GetStarted.bas

